Skip to main content
Log in

Experimental and theoretical study on the interaction of the pyridinium cation with a hexaarylbenzene-based receptor

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Extraction experiments in the two-phase water/nitrobenzene system and γ-activity measurements were used to determine the stability constant of a hexaarylbenzene-based receptor/pyridinium complex dissolved in nitrobenzene saturated with water. Further, applying quantum mechanical calculations, the most probable structure of this “asymmetrical” cationic complex was derived.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Watson MD, Fechtenkötter A, Müllen K (2001) Chem Rev 101:1267

    Article  CAS  Google Scholar 

  2. Rathore R, Burns CL (2003) J Org Chem 68:4071

    Article  CAS  Google Scholar 

  3. Petty MC, Bryce MR, Bloor D (1995) Introduction to molecular electronics. Oxford University Press, New York

    Google Scholar 

  4. Maiya BG, Ramasarma T (2001) Curr Sci 80:1523

    CAS  Google Scholar 

  5. Shukla R, Lindeman SV, Rathore R (2006) J Am Chem Soc 128:5328

    Article  CAS  Google Scholar 

  6. Shukla R, Lindeman SV, Rathore R (2007) Org Lett 9:1291

    Article  CAS  Google Scholar 

  7. Ma JC, Dougherty DA (1997) Chem Rev 97:1303

    Article  CAS  Google Scholar 

  8. Armentrout PB, Rodgers MT (2000) J Phys Chem A 104:2238

    Article  CAS  Google Scholar 

  9. Gapeev A, Yang CN, Klippenstein SJ, Dunbar RC (2000) J Phys Chem A 104:3246

    Article  CAS  Google Scholar 

  10. Tsuzuki S, Yoshida M, Uchimaru Y, Mikami M (2001) J Phys Chem A 105:769

    Article  CAS  Google Scholar 

  11. Huang H, Rodgers MT (2002) J Phys Chem A 106:4277

    Article  CAS  Google Scholar 

  12. Mo Y, Subramanian G, Gao J, Ferguson DM (2002) J Am Chem Soc 124:4832

    Article  CAS  Google Scholar 

  13. Reddy AS, Sastry GN (2005) J Phys Chem A 109:8893

    Article  CAS  Google Scholar 

  14. Vijay D, Sastry GN (2008) Phys Chem Chem Phys 10:582

    Article  CAS  Google Scholar 

  15. Sakurai K, Mizuno T, Hiroaki H, Gohda K, Oku J, Tanaka T (2005) Angew Chem Int Ed 44:6180

    Article  CAS  Google Scholar 

  16. Makrlík E, Dybal J, Vaňura P (2009) Monatsh Chem 140:251

    Article  Google Scholar 

  17. Makrlík E, Dybal J, Vaňura P (2009) Monatsh Chem 140:1289

    Article  Google Scholar 

  18. Makrlík E, Dybal J, Vaňura P (2010) Monatsh Chem 141:1191

    Article  Google Scholar 

  19. Dybal J, Makrlík E, Vaňura P (2010) Monatsh Chem 141:15

    Article  CAS  Google Scholar 

  20. Dybal J, Makrlík E, Vaňura P (2009) J Radioanal Nucl Chem 279:253

    Article  Google Scholar 

  21. Makrlík E, Toman P, Vaňura P (2011) J Radioanal Nucl Chem 289:667

    Article  Google Scholar 

  22. Makrlík E, Toman P, Vaňura P (2012) J Radioanal Nucl Chem 292:1137

    Article  Google Scholar 

  23. Makrlík E, Toman P, Vaňura P (2013) J Radioanal Nucl Chem 295:615

    Article  Google Scholar 

  24. Makrlík E, Dybal J, Vaňura P (2013) J Radioanal Nucl Chem 295:1299

    Article  Google Scholar 

  25. Makrlík E, Toman P, Vaňura P (2013) Monatsh Chem 143:199

    Article  Google Scholar 

  26. Makrlík E, Toman P, Vaňura P (2013) J Radioanal Nucl Chem 295:1119

    Article  Google Scholar 

  27. Makrlík E, Toman P, Vaňura P (2013) J Radioanal Nucl Chem 295:1887

    Article  Google Scholar 

  28. Hawthorne MF, Young DC, Andrews TD, Howe DV, Pilling RL, Pitts AD, Reintjes M, Warren LF, Wegner PA (1968) J Am Chem Soc 90:879

    Article  CAS  Google Scholar 

  29. Makrlík E, Vaňura P (1985) Talanta 32:423

    Article  Google Scholar 

  30. Rais J (1971) Collect Czech Chem Commun 36:3253

    Article  CAS  Google Scholar 

  31. Makrlík E, Božek F (1998) Polish J Chem 72:949

    Google Scholar 

  32. Makrlík E, Selucký P, Vaňura P, Budka J (2010) J Radioanal Nucl Chem 286:155

    Article  Google Scholar 

  33. Makrlík E, Hálová J, Kyrš M (1984) Collect Czech Chem Commun 49:39

    Article  Google Scholar 

  34. Makrlík E, Vaňura P (1998) ACH Models Chem 135:213

    Google Scholar 

  35. Makrlík E, Vaňura P, Daňková M (1999) J Radioanal Nucl Chem 240:579

    Article  Google Scholar 

  36. Makrlík E, Vaňura P (2006) Monatsh Chem 137:157

    Article  Google Scholar 

  37. Makrlík E, Toman P, Vaňura P, Selucký P, Rathore R (2010) J Radioanal Nucl Chem 286:55

    Article  Google Scholar 

  38. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  39. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  40. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision C.01. Gaussian Inc, Wallingford

  41. Kříž J, Dybal J, Makrlík E, Budka J, Vaňura P (2009) J Phys Chem A 113:5896

    Article  Google Scholar 

  42. Kříž J, Toman P, Makrlík E, Budka J, Shukla R, Rathore R (2010) J Phys Chem A 114:5327

    Google Scholar 

  43. Kříž J, Dybal J, Makrlík E, Vaňura P, Moyer BA (2011) J Phys Chem B 115:7578

    Article  Google Scholar 

  44. Toman P, Makrlík E, Vaňura P (2012) Monatsh Chem 143:985

    Article  CAS  Google Scholar 

  45. Makrlík E, Toman P, Vaňura P (2013) Monatsh Chem 144:919

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Grant Agency of Faculty of Environmental Sciences, Czech University of Life Sciences, Prague, Project No.: 42900/1312/3114 “Environmental Aspects of Sustainable Development of Society”, and by the Czech Ministry of Education, Youth, and Sports (Project MSM 6046137307). The authors of this study thank Dr. Petr Toman from Prague for some theoretical calculations. Finally, R.R. thanks the National Science Foundation for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuel Makrlík.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makrlík, E., Vaňura, P. & Rathore, R. Experimental and theoretical study on the interaction of the pyridinium cation with a hexaarylbenzene-based receptor. Monatsh Chem 146, 521–525 (2015). https://doi.org/10.1007/s00706-014-1370-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-014-1370-y

Keywords

Navigation