Skip to main content
Log in

Experimental and theoretical study on the complexation of the cesium cation with dibenzo-30-crown-10

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

From extraction experiments and γ-activity measurements, the extraction constant corresponding to the equilibrium Cs+ (aq) + A (aq) + 1(nb) \( \rightleftarrows \) 1·Cs+(nb) + A(nb) taking place in the two-phase water–nitrobenzene system (A = picrate, 1 = dibenzo-30-crown-10; aq = aqueous phase, nb = nitrobenzene phase) was evaluated as log K ex (1·Cs+, A) = 4.0 ± 0.1. Further, the stability constant of the 1·Cs+ complex in nitrobenzene saturated with water was calculated for a temperature of 25 °C: log β nb (1·Cs+) = 5.9 ± 0.1. Finally, by using quantum–mechanical DFT calculations, the most probable structure of the resulting cationic complex species 1·Cs+ was derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Pedersen CJ (1967) J Am Chem Soc 89:2495

    Article  CAS  Google Scholar 

  2. Pedersen CJ (1967) J Am Chem Soc 89:7017

    Article  CAS  Google Scholar 

  3. Kolthoff IM (1979) Anal Chem 51:1R

    Article  CAS  Google Scholar 

  4. Pedersen CJ (1970) J Am Chem Soc 92:386

    Article  CAS  Google Scholar 

  5. Pedersen CJ (1970) J Am Chem Soc 92:391

    Article  CAS  Google Scholar 

  6. Izatt RM, Nelson DP, Rytting JH, Haymore BL, Christensen JJ (1971) J Am Chem Soc 93:1619

    Article  CAS  Google Scholar 

  7. Pedersen CJ, Frensdorff HK (1972) Angew Chem Int Ed 11:16

    Article  CAS  Google Scholar 

  8. King RB, Heckley HR (1974) J Am Chem Soc 96:3118

    Article  CAS  Google Scholar 

  9. Tomaja DL (1977) Inorg Chim Acta 21:L31

    Article  CAS  Google Scholar 

  10. Cram DJ, Cram JM (1974) Science 183:801

    Article  Google Scholar 

  11. Dotsevi G, Sogah Y, Cram DJ (1975) J Am Chem Soc 97:1259

    Article  CAS  Google Scholar 

  12. Helgeson RC, Koga K, Tinko JM, Cram DJ (1973) J Am Chem Soc 95:3021

    Article  CAS  Google Scholar 

  13. Newcomb M, Cram DJ (1975) J Am Chem Soc 97:1257

    Article  CAS  Google Scholar 

  14. Izatt RM, Terry RE, Haymore BL, Hansen LD, Dalley NK, Avondett AG, Christensen JJ (1976) J Am Chem Soc 98:7620

    Article  CAS  Google Scholar 

  15. Izatt RM, Terry RE, Haymore BL, Hansen LD, Dalley NK, Avondett AG, Christensen JJ (1976) J Am Chem Soc 98:7626

    Article  CAS  Google Scholar 

  16. Izatt RM, Lamb JD, Asay RE, Maas GE, Bradshaw JS, Christensen JJ (1977) J Am Chem Soc 99:2365

    Article  CAS  Google Scholar 

  17. Mei E, Popov AI, Dye JL (1977) J Phys Chem 81:1677

    Article  CAS  Google Scholar 

  18. Shamsipur M, Popov AI (1988) J Phys Chem 92:147

    Article  CAS  Google Scholar 

  19. Yapar G, Erk C (2002) J Inclusion Phenom 43:299

    Article  CAS  Google Scholar 

  20. Khayatian C, Shariati S, Shamsipur M (2003) J Inclusion Phenom 45:117

    Article  CAS  Google Scholar 

  21. Katsuta S, Kuwano T, Ito Y, Takeda Y (2005) J Chem Eng Data 50:1313

    Article  CAS  Google Scholar 

  22. Shamsipur M, Tavakkoli N (2004) Polish J Chem 78:109

    CAS  Google Scholar 

  23. Shamsipur H, Zare K, Shamsipur M (2006) Polish J Chem 80:1755

    CAS  Google Scholar 

  24. Makrlík E, Vaňura P, Selucký P, Hálová J (2007) J Radioanal Nucl Chem 274:625

    Article  Google Scholar 

  25. Makrlík E, Vaňura P (2008) J Radioanal Nucl Chem 275:673

    Article  Google Scholar 

  26. Makrlík E, Vaňura P, Selucký P (2009) J Radioanal Nucl Chem 281:547

    Article  Google Scholar 

  27. Makrlík E, Vaňura P, Selucký P, Kašička V (2010) J Radioanal Nucl Chem 283:95

    Article  Google Scholar 

  28. Makrlík E, Vaňura P, Selucký P (2011) J Radioanal Nucl Chem 287:411

    Article  Google Scholar 

  29. Christensen JJ, Eatough DJ, Izatt RM (1974) Chem Rev 74:351

    Article  Google Scholar 

  30. Bradshaw JS, Izatt RM (1997) Acc Chem Res 30:338

    Article  CAS  Google Scholar 

  31. Izatt RM, Pawlak K, Bradshaw JS, Bruening RL (1991) Chem Rev 91:1721

    Article  CAS  Google Scholar 

  32. Rais J (1971) Collect Czech Chem Commun 36:3253

    CAS  Google Scholar 

  33. Makrlík E, Rais J, Baše K, Plešek J, Vaňura P (1995) J Radioanal Nucl Chem 198:359

    Article  Google Scholar 

  34. Makrlík E, Božek F (1998) Polish J Chem 72:949

    Google Scholar 

  35. Makrlík E, Hálová J, Kyrš M (1984) Collect Czech Chem Commun 49:39

    Article  Google Scholar 

  36. Makrlík E, Vaňura P (1998) ACH-Models Chem 135:213

    Google Scholar 

  37. Makrlík E, Vaňura P, Selucký P (2006) J Radioanal Nucl Chem 267:703

    Article  Google Scholar 

  38. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:703

    Google Scholar 

  39. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  40. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C. 02. Gaussian, Inc., Wallingford

    Google Scholar 

  41. Kříž J, Dybal J, Makrlík E (2006) Biopolymers 82:536

    Article  Google Scholar 

  42. Kříž J, Dybal J, Makrlík E, Vaňura P, Lang J (2007) Supramol Chem 19:419

    Article  Google Scholar 

  43. Kříž J, Dybal J, Makrlík E, Vaňura P (2008) Supramol Chem 20:387

    Article  Google Scholar 

  44. Kříž J, Dybal J, Makrlík E, Budka J, Vaňura P (2008) Supramol Chem 20:487

    Article  Google Scholar 

  45. Kříž J, Dybal J, Makrlík E, Budka J (2008) J Phys Chem A 112:10236

    Article  Google Scholar 

  46. Kříž J, Dybal J, Makrlík E, Budka J, Vaňura P (2009) J Phys Chem A 113:5896

    Article  Google Scholar 

  47. Kříž J, Toman P, Makrlík E, Budka J, Shukla R, Rathore R (2010) J Phys Chem A 114:5327

    Google Scholar 

  48. Kříž J, Dybal J, Makrlík E, Vaňura P, Moyer BA (2011) J Phys Chem B 115:7578

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Grant Agency of Faculty of Environmental Sciences, Czech University of Life Sciences, Prague, Project No.: 42900/1312/3114 “Environmental Aspects of Sustainable Development of Society,” by the Czech Ministry of Education, Youth and Sports (Project MSM 6046137307) and by the Czech Science Foundation (Project P 205/10/2280). The computer time at the MetaCentrum (Project LM 2010005), as well as at the Institute of Physics (computer Luna/Apollo), Academy of Sciences of the Czech Republic, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Makrlík.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makrlík, E., Toman, P. & Vaňura, P. Experimental and theoretical study on the complexation of the cesium cation with dibenzo-30-crown-10. J Radioanal Nucl Chem 292, 1137–1140 (2012). https://doi.org/10.1007/s10967-011-1598-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-011-1598-5

Keywords

Navigation