Abstract
Human herpesviruses are among the most prevalent pathogens worldwide and have become an important public health issue. Recurrent infections and the emergence of resistant viral strains reinforce the need of searching new drugs to treat herpes virus infections. Cardiac glycosides are used clinically to treat cardiovascular disturbances, such as congestive heart failure and atrial arrhythmias. In recent years, they have sparked new interest in their potential anti-herpes action. It has been previously reported by our research group that two new semisynthetic cardenolides, namely C10 (3β-[(N-(2-hydroxyethyl)aminoacetyl]amino-3-deoxydigitoxigenin) and C11 (3β-(hydroxyacetyl)amino-3-deoxydigitoxigenin), exhibited potential anti-HSV-1 and anti-HSV-2 with selectivity index values > 1,000, comparable with those of acyclovir. This work reports the mechanism investigation of anti-herpes action of these derivatives. The results demonstrated that C10 and C11 interfere with the intermediate and final steps of HSV replication, but not with the early stages, since they completely abolished the expression of the UL42 (β) and gD (γ) proteins and partially reduced that of ICP27 (α). Additionally, they were not virucidal and had no prophylactic effects. Both compounds inhibited HSV replication at nanomolar concentrations, but cardenolide C10 was more active than C11 and can be considered as an anti-herpes drug candidate including against acyclovir-resistant HSV-1 strains.




Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Abbreviations
- ACV:
-
acyclovir
- CC50 :
-
50% cytotoxic concentration
- CMC:
-
carboxymethylcellulose
- DEX-S:
-
dextran sulfate
- FBS:
-
fetal bovine serum
- HIV:
-
human immunodeficiency virus
- HSV-1:
-
herpes simplex virus type 1
- HSV-2:
-
herpes simplex virus type 2
- HPV:
-
human papillomavirus
- IC50 :
-
concentration that inhibited 50% of viral replication
- MEM:
-
Eagle’s minimum essential medium
- MOI:
-
multiplicity of infection
- PBS:
-
phosphate-buffered saline
- PFU:
-
plaque-forming units
- SI:
-
selectivity index
References
Roizman B, Knipe DM, Whitley RJ (2013) Herpes simplex viruses. In: Knipe DM, Howley PM, Cohen JI, Griffin DE, Lamb RA, Martin MA, Racaniello VR, Roizman B (eds) Fields Virology. Lippincott Willians & Wilkins, Philadelphia, pp 1823–1897
Kukhanova MK, Korovina AN, Kochetkov SN (2014) Human herpes simplex virus: life cycle and development of inhibitors. Biochemistry (Mosc) 79:1635–1652. https://doi.org/10.1134/S0006297914130124
Mamidyala SK, Firestine SM (2006) Advances in herpes simplex virus antiviral therapies. Expert Opin Ther Pat 16:1463–1480. https://doi.org/10.1517/13543776.16.11.1463
Bacon TH, Levin MJ, Leary JJ, Sarisky RT, Sutton D (2003) Herpes simplex virus resistance to acyclovir and penciclovir after two decades of antiviral therapy. Clin Microbiol Rev 16:114–128. https://doi.org/10.1128/CMR.16.1.114-128.2003
Morfin F, Thouvenot D (2003) Herpes simplex virus resistance to antiviral drugs. J Clin Virol 26:29–37. https://doi.org/10.1016/S1386-6532(02)00263-9
Roizman B, Whitley RJ (2013) An inquiry into the molecular basis of HSV latency and reactivation. Annu Rev Microbiol 67:355–374. https://doi.org/10.1146/annurev-micro-092412-155654
Bessen HA (1986) Therapeutic and toxic effects of digitalis: William Withering, 1785. J Emerg Med 4:243–248. https://doi.org/10.1016/0736-4679(86)90048-X
Rahimtoola SH, Tak T (1996) The use of digitalis in heart failure. Curr Probl Cardiol 21:781–853. https://doi.org/10.1016/S0146-2806(96)80001-6
Horisberger JD (2004) Recent insights into the structure and mechanism of the sodium pump. Physiology (Bethesda) 19:377–387. https://doi.org/10.1152/physiol.00013.2004
Cerella C, Dicato M, Diederich M (2013) Assembling the puzzle of anti-cancer mechanisms triggered by cardiac glycosides. Mitochondrion 13:225–234. https://doi.org/10.1016/j.mito.2012.06.003
De S, Banerjee S, Babu MN, Lakhmi BM, Babu TMS (2016) Review on cardiac glycosides in cancer research and cancer therapy. Indo Am J Pharm Res 6:5391–5400. https://doi.org/10.1044/1980-iajpr.150453
Diederich M, Muller F, Cerella C (2017) Cardiac glycosides: from molecular targets to immunogenic cell death. Biochem Pharmacol 125:1–11. https://doi.org/10.1016/j.bcp.2016.08.017
Schneider NFZ, Cerella C, Simões CMO, Diederich M (2017) Anticancer and immunogenic properties of cardiac glycosides. Molecules 22:E1932. https://doi.org/10.3390/molecules22111932
El-Seedi HR, Khalifa SAM, Taher EA, Farag MA, Saeed A, Gamal M, Hegazy MF, Youssef D, Musharraf SG, Alajlani MM, Xiao J, Efferth T (2019) Cardenolides: Insights from chemical structure and pharmacological utility. Pharmacol Res 141:123–175. https://doi.org/10.1016/j.phrs.2018.12.015
Zeitlin PL, Diener-West M, Callahan KA, Lee S, Talbot CC Jr, Pollard B, Boyle MP, Lechtzin N (2017) Digitoxin for airway inflammation in cystic fibrosis: preliminary assessment of safety, pharmacokinetics, and dose finding. Ann Am Thorac Soc 14:220–229. https://doi.org/10.1513/AnnalsATS.201608-649OC
Hoopes GM, Hamilton JP, Kim J, Zhao D, Wiegert-Rininger K, Crisovan E, Buell CR (2018) Genome assembly and annotation of the medicinal plant Calotropis gigantea, a producer of anticancer and antimalarial cardenolides. G3 (Bethesda) 8:385–391. https://doi.org/10.1534/g3.117.300331
Xu J, Guo Y, Sui T, Wang Q, Zhang Y, Zhang R, Wang M, Guan S, Wang L (2017) Molecular mechanisms of anti-oxidant and anti-aging effects induced by convallatoxin in Caenorhabditis elegans. Free Radic Res 51:529–544. https://doi.org/10.1080/10715762.2017.1331037
Grosso F, Stoilov P, Lingwood C, Brown M, Cochrane A (2017) Suppression of adenovirus replication by cardiotonic steroids. J Virol 91:e01623–16. https://doi.org/10.1128/JVI.01623-16
Ashbrook AW, Lentscher AJ, Zamora PF, Silva LA, May NA, Bauer JA, Morrison TE, Dermody TS (2016) Antagonism of the sodium-potassium ATPase impairs chikungunya virus infection. MBio 7:e00693–16. https://doi.org/10.1128/mBio.00693-16
Yang CW, Chang HY, Hsu HY, Lee YZ, Chang HS, Chen IS, Lee SJ (2017) Identification of anti-viral activity of the cardenolides, Na+/K+-ATPase inhibitors, against porcine transmissible gastroenteritis virus. Toxicol Appl Pharmacol 332:129–137. https://doi.org/10.1016/j.taap.2017.04.017
Yang CW, Chang HY, Lee YZ, Hsu HY, Lee SJ (2018) The cardenolide ouabain suppresses coronaviral replication via augmenting a Na+/K+-ATPase-dependent PI3K_PDK1 axis signaling. Toxicol Appl Pharmacol 356:90–97. https://doi.org/10.1016/j.taap.2018.07.028
Cai H, Wang HY, Venkatadri R, Fu DX, Forman M, Bajaj SO, Li H, O’Doherty GA, Arav-Boger R (2014) Digitoxin analogues with improved anticytomegalovirus activity. ACS Med Chem Lett 5:395–399. https://doi.org/10.1021/ml400529q
Cohen T, Williams JD, Opperman TJ, Sanchez R, Lurain NS, Tortorella D (2016) Convallatoxin-induced reduction of methionine import effectively inhibits human cytomegalovirus infection and replication. J Virol 90:10715–10727. https://doi.org/10.1128/JVI.01050-16
Gardner TJ, Cohen T, Redmann V, Lau Z, Felsenfeld D, Tortorella D (2015) Development of a high-content screen for the identification of inhibitors directed against the early steps of the cytomegalovirus infectious cycle. Antiviral Res 113:49–61. https://doi.org/10.1016/j.antiviral.2014.10.011
Cheung YY, Chen KC, Chen H, Seng EK, Chu JJ (2014) Antiviral activity of lanatoside C against dengue virus infection. Antiviral Res 111:93–99. https://doi.org/10.1016/j.antiviral.2014.09.007
Bertol JW, Rigotto C, Pádua RM, Kreis W, Barardi CR, Braga FC, Simões CMO (2011) Antiherpes activity of glucoevatromonoside, a cardenolide isolated from a Brazilian cultivar of Digitalis lanata. Antiviral Res 92:73–80. https://doi.org/10.1016/j.antiviral.2011.06.015
Dodson AW, Taylor TJ, Knipe DM, Coen DM (2007) Inhibitors of the sodium potassium ATPase that impair herpes simplex virus replication identified via a chemical screening approach. Virology 366:340–348. https://doi.org/10.1016/j.virol.2007.05.001
Su CT, Hsu JT, Hsieh HP, Lin PH, Chen TC, Kao CL, Lee CN, Chang SY (2008) Anti-HSV activity of digitoxin and its possible mechanisms. Antiviral Res 79:62–70. https://doi.org/10.1016/j.antiviral.2008.01.156
Singh S, Shenoy S, Nehete PN, Yang P, Nehete B, Fontenot D, Yang G, Newman RA, Sastry KJ (2013) Nerium oleander derived cardiac glycoside oleandrin is a novel inhibitor of HIV infectivity. Fitoterapia 84:32–39. https://doi.org/10.1016/j.fitote.2012.10.017
Wong RW, Balachandran A, Ostrowski MA, Cochrane A (2013) Digoxin suppresses HIV-1 replication by altering viral RNA processing. PLoS Pathog 9:e1003241. https://doi.org/10.1371/journal.ppat.1003241
Wong RW, Lingwood CA, Ostrowski MA, Cabral T, Cochrane A (2018) Cardiac glycoside/aglycones inhibit HIV-1 gene expression by a mechanism requiring MEK1/2-ERK1/2 signaling. Sci Rep 8:850. https://doi.org/10.1038/s41598-018-19298-x
Van Der Kolk T, Dillingh MR, Rijneveld R, Klaassen ES, Koning MNC, Kouwenhoven STP, Genders RE, Bouwes Bavinck JN, Feiss G, Rissmann R, Burggraaf J (2017) Topical ionic contra-viral therapy comprised of digoxin and furosemide as a potential novel treatment approach for common warts. J Eur Acad Dermatol Venereol 31:2088–2090. https://doi.org/10.1111/jdv.14527
Hoffmann HH, Palese P, Shaw ML (2008) Modulation of influenza virus replication by alteration of sodium ion transport and protein kinase C activity. Antiviral Res 80:124–134. https://doi.org/10.1016/j.antiviral.2008.05.008
Kiyohara H, Ichino C, Kawamura Y, Nagai T, Sato N, Yamada H, Salama MM, Abdel-Sattar E (2012) In vitro anti-influenza virus activity of a cardiotonic glycoside from Adenium obesum (Forssk.). Phytomedicine 19:111–114. https://doi.org/10.1016/j.phymed.2011.07.00
Amarelle L, Katzen J, Shigemura M, Welch LC, Cajigas H, Peteranderl C, Celli D, Herold S, Lecuona E, Sznajder JI (2019) Cardiac glycosides decrease influenza virus replication by inhibiting cell protein translational machinery. Am J Physiol Lung Cell Mol Physiol 6:L1094–L1106. https://doi.org/10.1152/ajplung.00173.2018
Norris MJ, Malhi M, Duan W, Ouyang H, Granados A, Cen Y, Tseng YC, Gubbay J, Maynes J, Moraes TJ (2018) Targeting intracellular ion homeostasis for the control of respiratory syncytial virus. Am J Respir Cell Mol Biol 59:733–744. https://doi.org/10.1165/rcmb.2017-0345OC
Amarelle L, Lecuona E (2018) The antiviral effects of Na, K-ATPase inhibition: a minireview. Int J Mol Sci 19:E2154. https://doi.org/10.3390/ijms19082154
Boff L, Munkert J, Ottoni FM, Schneider NFZ, Ramos GS, Kreis W, Andrade SF, Souza Filho JD, Braga FC, Alves R, Pádua RM, Simões CMO (2019) Potential anti-herpes and cytotoxic action of novel semisynthetic digitoxigenin-derivatives. Eur J Med Chem 167:546–561. https://doi.org/10.1016/j.ejmech.2019.01.076
Burleson FG, Chamberts TM, Wiedbrauk DL (1992) Virology: a laboratory manual. Academic, San Diego, p 250
Boff L, Silva IT, Argenta DF, Farias LM, Alvarenga LF, Pádua RM, Braga FC, Leite JP, Kratz JM, Simões CMO (2016) Strychnos pseudoquina A. St. Hil.: a Brazilian medicinal plant with promising in vitro antiherpes activity. J Appl Microbiol 121:1519–1529. https://doi.org/10.1111/jam.13279
Silva IT, Costa GM, Stoco PH, Schenkel EP, Reginatto FH, Simões CMO (2010) In vitro antiherpes effects of a C-glycosylflavonoid-enriched fraction of Cecropia glaziovii Sneth. Lett Appl Microbiol 51:143–148. https://doi.org/10.1111/j.1472-765X.2010.02870.x
Argenta DF, Silva IT, Bassani VL, Koester LS, Teixeira HF, Simões CMO (2015) Antiherpes evaluation of soybean isoflavonoids. Arch Virol 160:2335–2342. https://doi.org/10.1007/s00705-015-2514-z
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3
Prassas I, Diamandis EP (2008) Novel therapeutic applications of cardiac glycosides. Nat Rev Drug Discov 7:926–935. https://doi.org/10.1038/nrd2682
Ekblad M, Adamiak B, Bergstrom T, Johnstone KD, Karoli T, Liu L, Ferro V, Trybala E (2010) A highly lipophilic sulfated tetrasaccharide glycoside related to muparfostat (PI-88) exhibits virucidal activity against herpes simplex virus. Antiviral Res 86:196–203. https://doi.org/10.1016/j.antiviral.2010.02.318
Hartley C, Hartley M, Pardoe I, Knight A (2006) Ionic contra-viral therapy (ICVT); a new approach to the treatment of DNA virus infections. Arch Virol 151:2495–2501. https://doi.org/10.1007/s00705-006-0824-x
Nagai Y, Maeno K, Iinuma M, Yoshida T, Matsumoto T (1972) Inhibition of virus growth by ouabain: effect of ouabain on the growth of HVJ in chick embryo cells. J Virol 9:234–243
Colbère F (1975) L’Herpèsvirus simplex: structure, réplication et biologie. Bull Inst Pasteur 73:203–254
Dasgupta G, Chentoufi AA, Kalantari M, Falatoonzadeh P, Chun S, Lim CH, Felgner PL, Davies DH, BenMohamed L (2012) Immunodominant “asymptomatic” herpes simplex virus 1 and 2 protein antigens identified by probing whole-ORFome microarrays with serum antibodies from seropositive asymptomatic versus symptomatic individuals. J Virol 86:4358–4369. https://doi.org/10.1128/JVI.07107-11
Davison AJ (2011) Evolution of sexually transmitted and sexually transmissible human herpesviruses. Ann NY Acad Sci 1230:E37–E49. https://doi.org/10.1111/j.1749-6632.2011.06358.x
Park D, Lalli J, Sedlackova-Slavikova L, Rice SA (2015) Functional comparison of herpes simplex virus 1 (HSV-1) and HSV-2 ICP27 homologs reveals a role for ICP27 in virion release. J Virol 89:2892–2905. https://doi.org/10.1128/JVI.02994-14
Terlizzi ME, Occhipinti A, Luganini A, Maffei ME, Gribaudo G (2016) Inhibition of herpes simplex type 1 and type 2 infections by Oximacro®, a cranberry extract with a high content of A-type proanthocyanidins (PACs-A). Antiviral Res 132:154–164. https://doi.org/10.1016/j.antiviral.2016.06.006
Priengprom T, Ekalaksananan T, Kongyingyoes B, Suebsasana S, Aromdee C, Pientong C (2015) Synergistic effects of acyclovir and 3, 19-isopropylideneandrographolide on herpes simplex virus wild types and drug-resistant strains. BMC Complement Altern Med 15:56. https://doi.org/10.1186/s12906-015-0591-x
Forsgren M, Klapper PE (2009) Herpes simplex virus type 1 and type 2. In: Zuckerman AJ, Banatvala JE, Schoub BD, Griffiths PD, Mortimer P (eds) Principles and practice of clinical virology, 6th edn. John Wiley & Sons, Chichester, pp 95–131
Nyberg K, Ekblad M, Bergström T, Freeman C, Parish CR, Ferro V, Trybala E (2004) The low molecular weight heparan sulfate-mimetic, PI-88, inhibits cell-to-cell spread of herpes simplex virus. Antiviral Res 63:15–24. https://doi.org/10.1016/j.antiviral.2004.01.001
Astani A, Navid MH, Schnitzler P (2014) Attachment and penetration of acyclovir-resistant herpes simplex virus are inhibited by Melissa officinalis extract. Phytother Res 10:1547–1552. https://doi.org/10.1002/ptr.5166
Cardozo FT, Camelini CM, Mascarello A, Rossi MJ, Nunes RJ, Barardi CR, Mendonça MM, Simões CMO (2011) Antiherpetic activity of a sulfated polysaccharide from Agaricus brasiliensis mycelia. Antiviral Res 92:108–114. https://doi.org/10.1016/j.antiviral.2011.07.009
Deethae A, Peerapornpisal Y, Pekkoh J, Sangthong P, Tragoolpua Y (2018) Inhibitory effect of Spirogyra spp. algal extracts against herpes simplex virus type 1 and 2 infection. J Appl Microbiol 124:1441–1453. https://doi.org/10.1111/jam.13729
Fernández Romero JA, Del Barrio AG, Alvarez RB, Gutiérrez Y, Valdés VS, Parra F (2003) In vitro antiviral activity of Phyllanthus orbicularis extracts against herpes simplex virus type 1. Phytother Res 17:980–982. https://doi.org/10.1002/ptr.1300
Gescher K, Hensel A, Hafezi W, Derksen A, Kühn J (2011) Oligomeric proanthocyanidins from Rumex acetosa L. inhibit the attachment of herpes simplex virus type-1. Antiviral Res 89:9–18. https://doi.org/10.1016/j.antiviral.2010.10.007
Ghosh M, Civra A, Rittà M, Cagno V, Mavuduru SG, Awasthi P, Lembo D, Donalisio M (2016) Ficus religiosa L. bark extracts inhibit infection by herpes simplex virus type 2 in vitro. Arch Virol 161:3509–3514. https://doi.org/10.1007/s00705-016-3032-3
Kesharwani A, Polachira SK, Nair R, Agarwal A, Mishra NN, Gupta SK (2017) Anti-HSV-2 activity of Terminalia chebula Retz extract and its constituents, chebulagic and chebulinic acids. BMC Complement Altern Med 17:110. https://doi.org/10.1186/s12906-017-1620-8
Lückemeyer DD, Müller VD, Moritz MI, Stoco PH, Schenkel EP, Barardi CR, Reginatto FH, Simões CMO (2012) Effects of Ilex paraguariensis A. St. Hil. (yerba mate) on herpes simplex virus types 1 and 2 replication. Phytother Res 26:535–540. https://doi.org/10.1002/ptr.3590
Ohta Y, Lee JB, Hayashi K, Hayashi T (2009) Isolation of sulfated galactan from Codium fragile and its antiviral effect. Biol Pharm Bull 32:892–898. https://doi.org/10.1248/bpb.32.892
Akanitapichat P, Wangmaneerat A, Wilairat P, Bastow KF (2006) Anti-herpes virus activity of Dunbaria bella Prain. J Ethnopharmacol 105:64–68. https://doi.org/10.1016/j.jep.2005.09.035
Hayashi K, Iinuma M, Sasaki K, Hayashi T (2012) In vitro and in vivo evaluation of a novel antiherpetic flavonoid, 4’-phenylflavone, and its synergistic actions with acyclovir. Arch Virol 157:1489–1498. https://doi.org/10.1007/s00705-012-1335-6
Lee S, Lee HH, Shin YS, Kang H, Cho H (2017) The anti-HSV-1 effect of quercetin is dependent on the suppression of TLR-3 in Raw 264.7 cells. Arch Pharm Res 40:623–630. https://doi.org/10.1007/s12272-017-0898-x
Sarkar S, Koga J, Whitley RJ, Chatterjee S (1993) Antiviral effect of the extract of culture medium of Lentinus edodes mycelia on the replication of herpes simplex virus type 1. Antiviral Res 20:293–303. https://doi.org/10.1016/0166-3542(93)90073-R
Annunziata G, Maisto M, Schisano C, Ciampaglia R, Narciso V, Tenore GC, Novellino E (2018) Resveratrol as a novel anti-herpes simplex virus nutraceutical agent: an overview. Viruses 10:E473. https://doi.org/10.3390/v10090473
Cai H, Kapoor A, He R, Venkatadri R, Forman M, Posner GH, Arav-Boger R (2014) In vitro combination of anti-cytomegalovirus compounds acting through different targets: role of the slope parameter and insights into mechanisms of action. Antimicrob Agents Chemother 58:986–994. https://doi.org/10.1128/aac.01972-13
Kapoor A, Cai H, Forman M, He R, Shamay M, Arav-Boger R (2012) Human cytomegalovirus inhibition by cardiac glycosides: evidence for involvement of the HERG gene. Antimicrob Agents Chemother 56:4891–4899. https://doi.org/10.1128/AAC.00898-12
Mukhopadhyay R, Venkatadri R, Katsnelson J, Arav-Boger R (2018) Digitoxin suppresses human cytomegalovirus replication via Na+,K+/ATPase α1 subunit-dependent AMP-activated protein kinase and autophagy activation. J Virol 92:e01861–17. https://doi.org/10.1128/JVI.01861-17
Ganesan VK, Duan B, Reid SP (2017) Chikungunya virus: pathophysiology, mechanism, and modeling. Viruses 9:E368. https://doi.org/10.3390/v9120368
Bailey ES, Fieldhouse JK, Choi JY, Gray GC (2018) A mini review of the zoonotic threat potential of influenza viruses, coronaviruses, adenoviruses, and enteroviruses. Front Public Health 6:104. https://doi.org/10.3389/fpubh.2018.00104
Burkard C, Verheije MH, Haagmans BL, Van Kuppeveld FJ, Rottier PJ, Bosch BJ, Haan CA (2015) ATP1A1-mediated Src signaling inhibits coronavirus entry into host cells. J Virol 89:4434–4448. https://doi.org/10.1128/JVI.03274-14
Cui R, Wang Y, Wang L, Li G, Lan K, Altmeyer R, Zou G (2016) Cyclopiazonic acid, an inhibitor of calcium-dependent ATPases with antiviral activity against human respiratory syncytial virus. Antiviral Res 132:38–45. https://doi.org/10.1016/j.antiviral.2016.05.010
Stein RT, Bont LJ, Zar H, Polack FP, Park C, Claxton A, Borok G, Butylkova Y, Wegzyn C (2017) Respiratory syncytial virus hospitalization and mortality: Systematic review and meta-analysis. Pediatr Pulmonol 52:556–569. https://doi.org/10.1002/ppul.23570
Dowall SD, Bewley K, Watson RJ, Vasan SS, Ghosh C, Konai MM, Gausdal G, Lorens JB, Long J, Barclay W, Garcia-Dorival I, Hiscox J, Bosworth A, Taylor I, Easterbrook L, Pitman J, Summers S, Chan-Pensley J, Funnell S, Vipond J, Charlton S, Haldar J, Hewson R, Carroll MW (2016) Antiviral screening of multiple compounds against ebola virus. Viruses 8:E277. https://doi.org/10.3390/v8110277
Garcia-Dorival I, Wu W, Dowall S, Armstrong S, Touzelet O, Wastling J, Barr JN, Matthews D, Carroll M, Hewson R, Hiscox JA (2014) Elucidation of the Ebola virus VP24 cellular interactome and disruption of virus biology through targeted inhibition of host-cell protein function. J Proteome Res 13:5120–5135. https://doi.org/10.1021/pr500556d
Hui EK, Nayak DP (2001) Role of ATP in influenza virus budding. Virology 290:329–341. https://doi.org/10.1006/viro.2001.1181
Mi S, Li Y, Yan J, Gao GF (2010) Na+/K+-ATPase β1 subunit interacts with M2 proteins of influenza A and B viruses and affects the virus replication. Sci China Life Sci 53:1098–1105. https://doi.org/10.1007/s11427-010-4048-7
Laird GM, Eisele EE, Rabi SA, Nikolaeva D, Siliciano RF (2014) A novel cell-based high-throughput screen for inhibitors of HIV-1 gene expression and budding identifies the cardiac glycosides. J Antimicrob Chemother 69:988–994. https://doi.org/10.1093/jac/dkt471
Fytas C, Kolocouris A, Fytas G, Zoidis G, Valmas C, Basler CF (2010) Influence of an additional amino group on the potency of aminoadamantanes against influenza virus A. II - Synthesis of spiropiperazines and in vitro activity against influenza A H3N2 virus. Bioorg Chem 38:247–251. https://doi.org/10.1016/j.bioorg.2010.09.001
Tataridis D, Fytas G, Kolocouris A, Fytas C, Kolocouris N, Foscolos GB, Padalko E, Neyts J, De Clercq E (2007) Influence of an additional 2-amino substituent of the 1-aminoethyl pharmacophore group on the potency of rimantadine against influenza virus A. Bioorg Med Chem Lett 17:692–696. https://doi.org/10.1016/j.bmcl.2006.10.092
Acknowledgements
The authors thank the Brazilian funding agencies CAPES (MEC), Fapemig (APQ-00538-17, RMP) and CNPq (MCTI) for research fellowships, as well as CNPq for financial support (grant numbers 305878/2016-6, CMOS, and 490057/2011-0, FCB). They are also grateful to BAYLAT (JM and RMP for mobility support) and Marie Curie Foundation/European Community (FP7 IRSES, grant 295251, WK).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Handling Editor: Zhongjie Shi.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Boff, L., Schneider, N.F.Z., Munkert, J. et al. Elucidation of the mechanism of anti-herpes action of two novel semisynthetic cardenolide derivatives. Arch Virol 165, 1385–1396 (2020). https://doi.org/10.1007/s00705-020-04562-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00705-020-04562-1


