Skip to main content
Log in

Elucidation of the mechanism of anti-herpes action of two novel semisynthetic cardenolide derivatives

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Human herpesviruses are among the most prevalent pathogens worldwide and have become an important public health issue. Recurrent infections and the emergence of resistant viral strains reinforce the need of searching new drugs to treat herpes virus infections. Cardiac glycosides are used clinically to treat cardiovascular disturbances, such as congestive heart failure and atrial arrhythmias. In recent years, they have sparked new interest in their potential anti-herpes action. It has been previously reported by our research group that two new semisynthetic cardenolides, namely C10 (3β-[(N-(2-hydroxyethyl)aminoacetyl]amino-3-deoxydigitoxigenin) and C11 (3β-(hydroxyacetyl)amino-3-deoxydigitoxigenin), exhibited potential anti-HSV-1 and anti-HSV-2 with selectivity index values > 1,000, comparable with those of acyclovir. This work reports the mechanism investigation of anti-herpes action of these derivatives. The results demonstrated that C10 and C11 interfere with the intermediate and final steps of HSV replication, but not with the early stages, since they completely abolished the expression of the UL42 (β) and gD (γ) proteins and partially reduced that of ICP27 (α). Additionally, they were not virucidal and had no prophylactic effects. Both compounds inhibited HSV replication at nanomolar concentrations, but cardenolide C10 was more active than C11 and can be considered as an anti-herpes drug candidate including against acyclovir-resistant HSV-1 strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

ACV:

acyclovir

CC50 :

50% cytotoxic concentration

CMC:

carboxymethylcellulose

DEX-S:

dextran sulfate

FBS:

fetal bovine serum

HIV:

human immunodeficiency virus

HSV-1:

herpes simplex virus type 1

HSV-2:

herpes simplex virus type 2

HPV:

human papillomavirus

IC50 :

concentration that inhibited 50% of viral replication

MEM:

Eagle’s minimum essential medium

MOI:

multiplicity of infection

PBS:

phosphate-buffered saline

PFU:

plaque-forming units

SI:

selectivity index

References

  1. Roizman B, Knipe DM, Whitley RJ (2013) Herpes simplex viruses. In: Knipe DM, Howley PM, Cohen JI, Griffin DE, Lamb RA, Martin MA, Racaniello VR, Roizman B (eds) Fields Virology. Lippincott Willians & Wilkins, Philadelphia, pp 1823–1897

    Google Scholar 

  2. Kukhanova MK, Korovina AN, Kochetkov SN (2014) Human herpes simplex virus: life cycle and development of inhibitors. Biochemistry (Mosc) 79:1635–1652. https://doi.org/10.1134/S0006297914130124

    Article  CAS  Google Scholar 

  3. Mamidyala SK, Firestine SM (2006) Advances in herpes simplex virus antiviral therapies. Expert Opin Ther Pat 16:1463–1480. https://doi.org/10.1517/13543776.16.11.1463

    Article  CAS  Google Scholar 

  4. Bacon TH, Levin MJ, Leary JJ, Sarisky RT, Sutton D (2003) Herpes simplex virus resistance to acyclovir and penciclovir after two decades of antiviral therapy. Clin Microbiol Rev 16:114–128. https://doi.org/10.1128/CMR.16.1.114-128.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Morfin F, Thouvenot D (2003) Herpes simplex virus resistance to antiviral drugs. J Clin Virol 26:29–37. https://doi.org/10.1016/S1386-6532(02)00263-9

    Article  CAS  PubMed  Google Scholar 

  6. Roizman B, Whitley RJ (2013) An inquiry into the molecular basis of HSV latency and reactivation. Annu Rev Microbiol 67:355–374. https://doi.org/10.1146/annurev-micro-092412-155654

    Article  CAS  PubMed  Google Scholar 

  7. Bessen HA (1986) Therapeutic and toxic effects of digitalis: William Withering, 1785. J Emerg Med 4:243–248. https://doi.org/10.1016/0736-4679(86)90048-X

    Article  CAS  PubMed  Google Scholar 

  8. Rahimtoola SH, Tak T (1996) The use of digitalis in heart failure. Curr Probl Cardiol 21:781–853. https://doi.org/10.1016/S0146-2806(96)80001-6

    Article  CAS  PubMed  Google Scholar 

  9. Horisberger JD (2004) Recent insights into the structure and mechanism of the sodium pump. Physiology (Bethesda) 19:377–387. https://doi.org/10.1152/physiol.00013.2004

    Article  CAS  Google Scholar 

  10. Cerella C, Dicato M, Diederich M (2013) Assembling the puzzle of anti-cancer mechanisms triggered by cardiac glycosides. Mitochondrion 13:225–234. https://doi.org/10.1016/j.mito.2012.06.003

    Article  CAS  PubMed  Google Scholar 

  11. De S, Banerjee S, Babu MN, Lakhmi BM, Babu TMS (2016) Review on cardiac glycosides in cancer research and cancer therapy. Indo Am J Pharm Res 6:5391–5400. https://doi.org/10.1044/1980-iajpr.150453

    Article  CAS  Google Scholar 

  12. Diederich M, Muller F, Cerella C (2017) Cardiac glycosides: from molecular targets to immunogenic cell death. Biochem Pharmacol 125:1–11. https://doi.org/10.1016/j.bcp.2016.08.017

    Article  CAS  PubMed  Google Scholar 

  13. Schneider NFZ, Cerella C, Simões CMO, Diederich M (2017) Anticancer and immunogenic properties of cardiac glycosides. Molecules 22:E1932. https://doi.org/10.3390/molecules22111932

    Article  CAS  PubMed  Google Scholar 

  14. El-Seedi HR, Khalifa SAM, Taher EA, Farag MA, Saeed A, Gamal M, Hegazy MF, Youssef D, Musharraf SG, Alajlani MM, Xiao J, Efferth T (2019) Cardenolides: Insights from chemical structure and pharmacological utility. Pharmacol Res 141:123–175. https://doi.org/10.1016/j.phrs.2018.12.015

    Article  CAS  PubMed  Google Scholar 

  15. Zeitlin PL, Diener-West M, Callahan KA, Lee S, Talbot CC Jr, Pollard B, Boyle MP, Lechtzin N (2017) Digitoxin for airway inflammation in cystic fibrosis: preliminary assessment of safety, pharmacokinetics, and dose finding. Ann Am Thorac Soc 14:220–229. https://doi.org/10.1513/AnnalsATS.201608-649OC

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hoopes GM, Hamilton JP, Kim J, Zhao D, Wiegert-Rininger K, Crisovan E, Buell CR (2018) Genome assembly and annotation of the medicinal plant Calotropis gigantea, a producer of anticancer and antimalarial cardenolides. G3 (Bethesda) 8:385–391. https://doi.org/10.1534/g3.117.300331

    Article  CAS  Google Scholar 

  17. Xu J, Guo Y, Sui T, Wang Q, Zhang Y, Zhang R, Wang M, Guan S, Wang L (2017) Molecular mechanisms of anti-oxidant and anti-aging effects induced by convallatoxin in Caenorhabditis elegans. Free Radic Res 51:529–544. https://doi.org/10.1080/10715762.2017.1331037

    Article  CAS  PubMed  Google Scholar 

  18. Grosso F, Stoilov P, Lingwood C, Brown M, Cochrane A (2017) Suppression of adenovirus replication by cardiotonic steroids. J Virol 91:e01623–16. https://doi.org/10.1128/JVI.01623-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ashbrook AW, Lentscher AJ, Zamora PF, Silva LA, May NA, Bauer JA, Morrison TE, Dermody TS (2016) Antagonism of the sodium-potassium ATPase impairs chikungunya virus infection. MBio 7:e00693–16. https://doi.org/10.1128/mBio.00693-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yang CW, Chang HY, Hsu HY, Lee YZ, Chang HS, Chen IS, Lee SJ (2017) Identification of anti-viral activity of the cardenolides, Na+/K+-ATPase inhibitors, against porcine transmissible gastroenteritis virus. Toxicol Appl Pharmacol 332:129–137. https://doi.org/10.1016/j.taap.2017.04.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yang CW, Chang HY, Lee YZ, Hsu HY, Lee SJ (2018) The cardenolide ouabain suppresses coronaviral replication via augmenting a Na+/K+-ATPase-dependent PI3K_PDK1 axis signaling. Toxicol Appl Pharmacol 356:90–97. https://doi.org/10.1016/j.taap.2018.07.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cai H, Wang HY, Venkatadri R, Fu DX, Forman M, Bajaj SO, Li H, O’Doherty GA, Arav-Boger R (2014) Digitoxin analogues with improved anticytomegalovirus activity. ACS Med Chem Lett 5:395–399. https://doi.org/10.1021/ml400529q

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cohen T, Williams JD, Opperman TJ, Sanchez R, Lurain NS, Tortorella D (2016) Convallatoxin-induced reduction of methionine import effectively inhibits human cytomegalovirus infection and replication. J Virol 90:10715–10727. https://doi.org/10.1128/JVI.01050-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gardner TJ, Cohen T, Redmann V, Lau Z, Felsenfeld D, Tortorella D (2015) Development of a high-content screen for the identification of inhibitors directed against the early steps of the cytomegalovirus infectious cycle. Antiviral Res 113:49–61. https://doi.org/10.1016/j.antiviral.2014.10.011

    Article  CAS  PubMed  Google Scholar 

  25. Cheung YY, Chen KC, Chen H, Seng EK, Chu JJ (2014) Antiviral activity of lanatoside C against dengue virus infection. Antiviral Res 111:93–99. https://doi.org/10.1016/j.antiviral.2014.09.007

    Article  CAS  PubMed  Google Scholar 

  26. Bertol JW, Rigotto C, Pádua RM, Kreis W, Barardi CR, Braga FC, Simões CMO (2011) Antiherpes activity of glucoevatromonoside, a cardenolide isolated from a Brazilian cultivar of Digitalis lanata. Antiviral Res 92:73–80. https://doi.org/10.1016/j.antiviral.2011.06.015

    Article  CAS  PubMed  Google Scholar 

  27. Dodson AW, Taylor TJ, Knipe DM, Coen DM (2007) Inhibitors of the sodium potassium ATPase that impair herpes simplex virus replication identified via a chemical screening approach. Virology 366:340–348. https://doi.org/10.1016/j.virol.2007.05.001

    Article  CAS  PubMed  Google Scholar 

  28. Su CT, Hsu JT, Hsieh HP, Lin PH, Chen TC, Kao CL, Lee CN, Chang SY (2008) Anti-HSV activity of digitoxin and its possible mechanisms. Antiviral Res 79:62–70. https://doi.org/10.1016/j.antiviral.2008.01.156

    Article  CAS  PubMed  Google Scholar 

  29. Singh S, Shenoy S, Nehete PN, Yang P, Nehete B, Fontenot D, Yang G, Newman RA, Sastry KJ (2013) Nerium oleander derived cardiac glycoside oleandrin is a novel inhibitor of HIV infectivity. Fitoterapia 84:32–39. https://doi.org/10.1016/j.fitote.2012.10.017

    Article  CAS  PubMed  Google Scholar 

  30. Wong RW, Balachandran A, Ostrowski MA, Cochrane A (2013) Digoxin suppresses HIV-1 replication by altering viral RNA processing. PLoS Pathog 9:e1003241. https://doi.org/10.1371/journal.ppat.1003241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wong RW, Lingwood CA, Ostrowski MA, Cabral T, Cochrane A (2018) Cardiac glycoside/aglycones inhibit HIV-1 gene expression by a mechanism requiring MEK1/2-ERK1/2 signaling. Sci Rep 8:850. https://doi.org/10.1038/s41598-018-19298-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Van Der Kolk T, Dillingh MR, Rijneveld R, Klaassen ES, Koning MNC, Kouwenhoven STP, Genders RE, Bouwes Bavinck JN, Feiss G, Rissmann R, Burggraaf J (2017) Topical ionic contra-viral therapy comprised of digoxin and furosemide as a potential novel treatment approach for common warts. J Eur Acad Dermatol Venereol 31:2088–2090. https://doi.org/10.1111/jdv.14527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hoffmann HH, Palese P, Shaw ML (2008) Modulation of influenza virus replication by alteration of sodium ion transport and protein kinase C activity. Antiviral Res 80:124–134. https://doi.org/10.1016/j.antiviral.2008.05.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kiyohara H, Ichino C, Kawamura Y, Nagai T, Sato N, Yamada H, Salama MM, Abdel-Sattar E (2012) In vitro anti-influenza virus activity of a cardiotonic glycoside from Adenium obesum (Forssk.). Phytomedicine 19:111–114. https://doi.org/10.1016/j.phymed.2011.07.00

    Article  CAS  PubMed  Google Scholar 

  35. Amarelle L, Katzen J, Shigemura M, Welch LC, Cajigas H, Peteranderl C, Celli D, Herold S, Lecuona E, Sznajder JI (2019) Cardiac glycosides decrease influenza virus replication by inhibiting cell protein translational machinery. Am J Physiol Lung Cell Mol Physiol 6:L1094–L1106. https://doi.org/10.1152/ajplung.00173.2018

    Article  CAS  Google Scholar 

  36. Norris MJ, Malhi M, Duan W, Ouyang H, Granados A, Cen Y, Tseng YC, Gubbay J, Maynes J, Moraes TJ (2018) Targeting intracellular ion homeostasis for the control of respiratory syncytial virus. Am J Respir Cell Mol Biol 59:733–744. https://doi.org/10.1165/rcmb.2017-0345OC

    Article  PubMed  Google Scholar 

  37. Amarelle L, Lecuona E (2018) The antiviral effects of Na, K-ATPase inhibition: a minireview. Int J Mol Sci 19:E2154. https://doi.org/10.3390/ijms19082154

    Article  CAS  PubMed  Google Scholar 

  38. Boff L, Munkert J, Ottoni FM, Schneider NFZ, Ramos GS, Kreis W, Andrade SF, Souza Filho JD, Braga FC, Alves R, Pádua RM, Simões CMO (2019) Potential anti-herpes and cytotoxic action of novel semisynthetic digitoxigenin-derivatives. Eur J Med Chem 167:546–561. https://doi.org/10.1016/j.ejmech.2019.01.076

    Article  CAS  PubMed  Google Scholar 

  39. Burleson FG, Chamberts TM, Wiedbrauk DL (1992) Virology: a laboratory manual. Academic, San Diego, p 250

    Google Scholar 

  40. Boff L, Silva IT, Argenta DF, Farias LM, Alvarenga LF, Pádua RM, Braga FC, Leite JP, Kratz JM, Simões CMO (2016) Strychnos pseudoquina A. St. Hil.: a Brazilian medicinal plant with promising in vitro antiherpes activity. J Appl Microbiol 121:1519–1529. https://doi.org/10.1111/jam.13279

    Article  CAS  PubMed  Google Scholar 

  41. Silva IT, Costa GM, Stoco PH, Schenkel EP, Reginatto FH, Simões CMO (2010) In vitro antiherpes effects of a C-glycosylflavonoid-enriched fraction of Cecropia glaziovii Sneth. Lett Appl Microbiol 51:143–148. https://doi.org/10.1111/j.1472-765X.2010.02870.x

    Article  CAS  PubMed  Google Scholar 

  42. Argenta DF, Silva IT, Bassani VL, Koester LS, Teixeira HF, Simões CMO (2015) Antiherpes evaluation of soybean isoflavonoids. Arch Virol 160:2335–2342. https://doi.org/10.1007/s00705-015-2514-z

    Article  CAS  PubMed  Google Scholar 

  43. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  44. Prassas I, Diamandis EP (2008) Novel therapeutic applications of cardiac glycosides. Nat Rev Drug Discov 7:926–935. https://doi.org/10.1038/nrd2682

    Article  CAS  PubMed  Google Scholar 

  45. Ekblad M, Adamiak B, Bergstrom T, Johnstone KD, Karoli T, Liu L, Ferro V, Trybala E (2010) A highly lipophilic sulfated tetrasaccharide glycoside related to muparfostat (PI-88) exhibits virucidal activity against herpes simplex virus. Antiviral Res 86:196–203. https://doi.org/10.1016/j.antiviral.2010.02.318

    Article  CAS  PubMed  Google Scholar 

  46. Hartley C, Hartley M, Pardoe I, Knight A (2006) Ionic contra-viral therapy (ICVT); a new approach to the treatment of DNA virus infections. Arch Virol 151:2495–2501. https://doi.org/10.1007/s00705-006-0824-x

    Article  CAS  PubMed  Google Scholar 

  47. Nagai Y, Maeno K, Iinuma M, Yoshida T, Matsumoto T (1972) Inhibition of virus growth by ouabain: effect of ouabain on the growth of HVJ in chick embryo cells. J Virol 9:234–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Colbère F (1975) L’Herpèsvirus simplex: structure, réplication et biologie. Bull Inst Pasteur 73:203–254

    Google Scholar 

  49. Dasgupta G, Chentoufi AA, Kalantari M, Falatoonzadeh P, Chun S, Lim CH, Felgner PL, Davies DH, BenMohamed L (2012) Immunodominant “asymptomatic” herpes simplex virus 1 and 2 protein antigens identified by probing whole-ORFome microarrays with serum antibodies from seropositive asymptomatic versus symptomatic individuals. J Virol 86:4358–4369. https://doi.org/10.1128/JVI.07107-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Davison AJ (2011) Evolution of sexually transmitted and sexually transmissible human herpesviruses. Ann NY Acad Sci 1230:E37–E49. https://doi.org/10.1111/j.1749-6632.2011.06358.x

    Article  PubMed  Google Scholar 

  51. Park D, Lalli J, Sedlackova-Slavikova L, Rice SA (2015) Functional comparison of herpes simplex virus 1 (HSV-1) and HSV-2 ICP27 homologs reveals a role for ICP27 in virion release. J Virol 89:2892–2905. https://doi.org/10.1128/JVI.02994-14

    Article  CAS  PubMed  Google Scholar 

  52. Terlizzi ME, Occhipinti A, Luganini A, Maffei ME, Gribaudo G (2016) Inhibition of herpes simplex type 1 and type 2 infections by Oximacro®, a cranberry extract with a high content of A-type proanthocyanidins (PACs-A). Antiviral Res 132:154–164. https://doi.org/10.1016/j.antiviral.2016.06.006

    Article  CAS  PubMed  Google Scholar 

  53. Priengprom T, Ekalaksananan T, Kongyingyoes B, Suebsasana S, Aromdee C, Pientong C (2015) Synergistic effects of acyclovir and 3, 19-isopropylideneandrographolide on herpes simplex virus wild types and drug-resistant strains. BMC Complement Altern Med 15:56. https://doi.org/10.1186/s12906-015-0591-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Forsgren M, Klapper PE (2009) Herpes simplex virus type 1 and type 2. In: Zuckerman AJ, Banatvala JE, Schoub BD, Griffiths PD, Mortimer P (eds) Principles and practice of clinical virology, 6th edn. John Wiley & Sons, Chichester, pp 95–131

    Chapter  Google Scholar 

  55. Nyberg K, Ekblad M, Bergström T, Freeman C, Parish CR, Ferro V, Trybala E (2004) The low molecular weight heparan sulfate-mimetic, PI-88, inhibits cell-to-cell spread of herpes simplex virus. Antiviral Res 63:15–24. https://doi.org/10.1016/j.antiviral.2004.01.001

    Article  CAS  PubMed  Google Scholar 

  56. Astani A, Navid MH, Schnitzler P (2014) Attachment and penetration of acyclovir-resistant herpes simplex virus are inhibited by Melissa officinalis extract. Phytother Res 10:1547–1552. https://doi.org/10.1002/ptr.5166

    Article  Google Scholar 

  57. Cardozo FT, Camelini CM, Mascarello A, Rossi MJ, Nunes RJ, Barardi CR, Mendonça MM, Simões CMO (2011) Antiherpetic activity of a sulfated polysaccharide from Agaricus brasiliensis mycelia. Antiviral Res 92:108–114. https://doi.org/10.1016/j.antiviral.2011.07.009

    Article  CAS  PubMed  Google Scholar 

  58. Deethae A, Peerapornpisal Y, Pekkoh J, Sangthong P, Tragoolpua Y (2018) Inhibitory effect of Spirogyra spp. algal extracts against herpes simplex virus type 1 and 2 infection. J Appl Microbiol 124:1441–1453. https://doi.org/10.1111/jam.13729

    Article  CAS  PubMed  Google Scholar 

  59. Fernández Romero JA, Del Barrio AG, Alvarez RB, Gutiérrez Y, Valdés VS, Parra F (2003) In vitro antiviral activity of Phyllanthus orbicularis extracts against herpes simplex virus type 1. Phytother Res 17:980–982. https://doi.org/10.1002/ptr.1300

    Article  PubMed  Google Scholar 

  60. Gescher K, Hensel A, Hafezi W, Derksen A, Kühn J (2011) Oligomeric proanthocyanidins from Rumex acetosa L. inhibit the attachment of herpes simplex virus type-1. Antiviral Res 89:9–18. https://doi.org/10.1016/j.antiviral.2010.10.007

    Article  CAS  PubMed  Google Scholar 

  61. Ghosh M, Civra A, Rittà M, Cagno V, Mavuduru SG, Awasthi P, Lembo D, Donalisio M (2016) Ficus religiosa L. bark extracts inhibit infection by herpes simplex virus type 2 in vitro. Arch Virol 161:3509–3514. https://doi.org/10.1007/s00705-016-3032-3

    Article  CAS  PubMed  Google Scholar 

  62. Kesharwani A, Polachira SK, Nair R, Agarwal A, Mishra NN, Gupta SK (2017) Anti-HSV-2 activity of Terminalia chebula Retz extract and its constituents, chebulagic and chebulinic acids. BMC Complement Altern Med 17:110. https://doi.org/10.1186/s12906-017-1620-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lückemeyer DD, Müller VD, Moritz MI, Stoco PH, Schenkel EP, Barardi CR, Reginatto FH, Simões CMO (2012) Effects of Ilex paraguariensis A. St. Hil. (yerba mate) on herpes simplex virus types 1 and 2 replication. Phytother Res 26:535–540. https://doi.org/10.1002/ptr.3590

    Article  CAS  PubMed  Google Scholar 

  64. Ohta Y, Lee JB, Hayashi K, Hayashi T (2009) Isolation of sulfated galactan from Codium fragile and its antiviral effect. Biol Pharm Bull 32:892–898. https://doi.org/10.1248/bpb.32.892

    Article  CAS  PubMed  Google Scholar 

  65. Akanitapichat P, Wangmaneerat A, Wilairat P, Bastow KF (2006) Anti-herpes virus activity of Dunbaria bella Prain. J Ethnopharmacol 105:64–68. https://doi.org/10.1016/j.jep.2005.09.035

    Article  PubMed  Google Scholar 

  66. Hayashi K, Iinuma M, Sasaki K, Hayashi T (2012) In vitro and in vivo evaluation of a novel antiherpetic flavonoid, 4’-phenylflavone, and its synergistic actions with acyclovir. Arch Virol 157:1489–1498. https://doi.org/10.1007/s00705-012-1335-6

    Article  CAS  PubMed  Google Scholar 

  67. Lee S, Lee HH, Shin YS, Kang H, Cho H (2017) The anti-HSV-1 effect of quercetin is dependent on the suppression of TLR-3 in Raw 264.7 cells. Arch Pharm Res 40:623–630. https://doi.org/10.1007/s12272-017-0898-x

    Article  CAS  PubMed  Google Scholar 

  68. Sarkar S, Koga J, Whitley RJ, Chatterjee S (1993) Antiviral effect of the extract of culture medium of Lentinus edodes mycelia on the replication of herpes simplex virus type 1. Antiviral Res 20:293–303. https://doi.org/10.1016/0166-3542(93)90073-R

    Article  CAS  PubMed  Google Scholar 

  69. Annunziata G, Maisto M, Schisano C, Ciampaglia R, Narciso V, Tenore GC, Novellino E (2018) Resveratrol as a novel anti-herpes simplex virus nutraceutical agent: an overview. Viruses 10:E473. https://doi.org/10.3390/v10090473

    Article  CAS  PubMed  Google Scholar 

  70. Cai H, Kapoor A, He R, Venkatadri R, Forman M, Posner GH, Arav-Boger R (2014) In vitro combination of anti-cytomegalovirus compounds acting through different targets: role of the slope parameter and insights into mechanisms of action. Antimicrob Agents Chemother 58:986–994. https://doi.org/10.1128/aac.01972-13

    Article  PubMed  PubMed Central  Google Scholar 

  71. Kapoor A, Cai H, Forman M, He R, Shamay M, Arav-Boger R (2012) Human cytomegalovirus inhibition by cardiac glycosides: evidence for involvement of the HERG gene. Antimicrob Agents Chemother 56:4891–4899. https://doi.org/10.1128/AAC.00898-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mukhopadhyay R, Venkatadri R, Katsnelson J, Arav-Boger R (2018) Digitoxin suppresses human cytomegalovirus replication via Na+,K+/ATPase α1 subunit-dependent AMP-activated protein kinase and autophagy activation. J Virol 92:e01861–17. https://doi.org/10.1128/JVI.01861-17

  73. Ganesan VK, Duan B, Reid SP (2017) Chikungunya virus: pathophysiology, mechanism, and modeling. Viruses 9:E368. https://doi.org/10.3390/v9120368

    Article  CAS  PubMed  Google Scholar 

  74. Bailey ES, Fieldhouse JK, Choi JY, Gray GC (2018) A mini review of the zoonotic threat potential of influenza viruses, coronaviruses, adenoviruses, and enteroviruses. Front Public Health 6:104. https://doi.org/10.3389/fpubh.2018.00104

    Article  PubMed  PubMed Central  Google Scholar 

  75. Burkard C, Verheije MH, Haagmans BL, Van Kuppeveld FJ, Rottier PJ, Bosch BJ, Haan CA (2015) ATP1A1-mediated Src signaling inhibits coronavirus entry into host cells. J Virol 89:4434–4448. https://doi.org/10.1128/JVI.03274-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Cui R, Wang Y, Wang L, Li G, Lan K, Altmeyer R, Zou G (2016) Cyclopiazonic acid, an inhibitor of calcium-dependent ATPases with antiviral activity against human respiratory syncytial virus. Antiviral Res 132:38–45. https://doi.org/10.1016/j.antiviral.2016.05.010

    Article  CAS  PubMed  Google Scholar 

  77. Stein RT, Bont LJ, Zar H, Polack FP, Park C, Claxton A, Borok G, Butylkova Y, Wegzyn C (2017) Respiratory syncytial virus hospitalization and mortality: Systematic review and meta-analysis. Pediatr Pulmonol 52:556–569. https://doi.org/10.1002/ppul.23570

    Article  PubMed  Google Scholar 

  78. Dowall SD, Bewley K, Watson RJ, Vasan SS, Ghosh C, Konai MM, Gausdal G, Lorens JB, Long J, Barclay W, Garcia-Dorival I, Hiscox J, Bosworth A, Taylor I, Easterbrook L, Pitman J, Summers S, Chan-Pensley J, Funnell S, Vipond J, Charlton S, Haldar J, Hewson R, Carroll MW (2016) Antiviral screening of multiple compounds against ebola virus. Viruses 8:E277. https://doi.org/10.3390/v8110277

    Article  CAS  PubMed  Google Scholar 

  79. Garcia-Dorival I, Wu W, Dowall S, Armstrong S, Touzelet O, Wastling J, Barr JN, Matthews D, Carroll M, Hewson R, Hiscox JA (2014) Elucidation of the Ebola virus VP24 cellular interactome and disruption of virus biology through targeted inhibition of host-cell protein function. J Proteome Res 13:5120–5135. https://doi.org/10.1021/pr500556d

    Article  CAS  PubMed  Google Scholar 

  80. Hui EK, Nayak DP (2001) Role of ATP in influenza virus budding. Virology 290:329–341. https://doi.org/10.1006/viro.2001.1181

    Article  CAS  PubMed  Google Scholar 

  81. Mi S, Li Y, Yan J, Gao GF (2010) Na+/K+-ATPase β1 subunit interacts with M2 proteins of influenza A and B viruses and affects the virus replication. Sci China Life Sci 53:1098–1105. https://doi.org/10.1007/s11427-010-4048-7

    Article  CAS  PubMed  Google Scholar 

  82. Laird GM, Eisele EE, Rabi SA, Nikolaeva D, Siliciano RF (2014) A novel cell-based high-throughput screen for inhibitors of HIV-1 gene expression and budding identifies the cardiac glycosides. J Antimicrob Chemother 69:988–994. https://doi.org/10.1093/jac/dkt471

    Article  CAS  PubMed  Google Scholar 

  83. Fytas C, Kolocouris A, Fytas G, Zoidis G, Valmas C, Basler CF (2010) Influence of an additional amino group on the potency of aminoadamantanes against influenza virus A. II - Synthesis of spiropiperazines and in vitro activity against influenza A H3N2 virus. Bioorg Chem 38:247–251. https://doi.org/10.1016/j.bioorg.2010.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tataridis D, Fytas G, Kolocouris A, Fytas C, Kolocouris N, Foscolos GB, Padalko E, Neyts J, De Clercq E (2007) Influence of an additional 2-amino substituent of the 1-aminoethyl pharmacophore group on the potency of rimantadine against influenza virus A. Bioorg Med Chem Lett 17:692–696. https://doi.org/10.1016/j.bmcl.2006.10.092

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Brazilian funding agencies CAPES (MEC), Fapemig (APQ-00538-17, RMP) and CNPq (MCTI) for research fellowships, as well as CNPq for financial support (grant numbers 305878/2016-6, CMOS, and 490057/2011-0, FCB). They are also grateful to BAYLAT (JM and RMP for mobility support) and Marie Curie Foundation/European Community (FP7 IRSES, grant 295251, WK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cláudia Maria Oliveira Simões.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Zhongjie Shi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boff, L., Schneider, N.F.Z., Munkert, J. et al. Elucidation of the mechanism of anti-herpes action of two novel semisynthetic cardenolide derivatives. Arch Virol 165, 1385–1396 (2020). https://doi.org/10.1007/s00705-020-04562-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-020-04562-1

Profiles

  1. Rodrigo Maia de Pádua