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Abstract
Human herpesviruses are among the most prevalent pathogens worldwide and have become an important public health issue. 
Recurrent infections and the emergence of resistant viral strains reinforce the need of searching new drugs to treat herpes virus 
infections. Cardiac glycosides are used clinically to treat cardiovascular disturbances, such as congestive heart failure and 
atrial arrhythmias. In recent years, they have sparked new interest in their potential anti-herpes action. It has been previously 
reported by our research group that two new semisynthetic cardenolides, namely C10 (3β-[(N-(2-hydroxyethyl)aminoacetyl]
amino-3-deoxydigitoxigenin) and C11 (3β-(hydroxyacetyl)amino-3-deoxydigitoxigenin), exhibited potential anti-HSV-1 and 
anti-HSV-2 with selectivity index values > 1,000, comparable with those of acyclovir. This work reports the mechanism 
investigation of anti-herpes action of these derivatives. The results demonstrated that C10 and C11 interfere with the inter-
mediate and final steps of HSV replication, but not with the early stages, since they completely abolished the expression of 
the UL42 (β) and gD (γ) proteins and partially reduced that of ICP27 (α). Additionally, they were not virucidal and had no 
prophylactic effects. Both compounds inhibited HSV replication at nanomolar concentrations, but cardenolide C10 was more 
active than C11 and can be considered as an anti-herpes drug candidate including against acyclovir-resistant HSV-1 strains.

Abbreviations
ACV  acyclovir
CC50  50% cytotoxic concentration
CMC  carboxymethylcellulose
DEX-S  dextran sulfate
FBS  fetal bovine serum
HIV  human immunodeficiency virus
HSV-1  herpes simplex virus type 1
HSV-2  herpes simplex virus type 2
HPV  human papillomavirus

IC50  concentration that inhibited 50% of viral 
replication

MEM  Eagle’s minimum essential medium
MOI  multiplicity of infection
PBS  phosphate-buffered saline
PFU  plaque-forming units
SI  selectivity index

Introduction

Herpes simplex virus types 1 and 2 (HSV-1 and HSV-2) 
are alphaherpesviruses that infect humans. They have an 
enveloped icosahedral capsid containing a proteinaceous 
tegument and a linear DNA genome. For replication, it is 
necessary that the viruses adsorb and penetrate host cells to 
express α genes (immediate early phase), which mainly reg-
ulate viral replication, such as ICP27; β genes (early phase), 
which are involved in synthesis and packaging of DNA, such 
as UL42; and γ genes (late phase), which synthesize struc-
tural components of the virion, such as gD [1].

HSV-1 and HSV-2 infections are common and ubiqui-
tous, with a considerable social impact independently of 

Handling Editor: Zhongjie Shi.

 * Cláudia Maria Oliveira Simões 
 claudia.simoes@ufsc.br

1 Laboratório de Virologia Aplicada, Programa de 
Pós-Graduação em Farmácia, Universidade Federal de Santa 
Catarina (UFSC), Florianópolis, SC 88040-970, Brazil

2 Departamento de Produtos Farmacêuticos, Faculdade de 
Farmácia, Universidade Federal de Minas Gerais (UFMG), 
Belo Horizonte, MG 31270-901, Brazil

3 Pharmaceutical Biology, Department of Biology, 
Friedrich-Alexander-University Erlangen-Nuremberg, 
Erlangen, Germany

http://orcid.org/0000-0002-2942-0733
http://crossmark.crossref.org/dialog/?doi=10.1007/s00705-020-04562-1&domain=pdf


1386 L. Boff et al.

1 3

geographical region or population socioeconomic status, 
and are generally associated with ocular, orofacial and 
genital tract infections [2]. Most of the drugs used to treat 
herpesvirus infections are nucleoside analogs that share the 
same mechanism of action, affecting viral DNA synthesis by 
inhibiting viral DNA polymerase, such as acyclovir (ACV), 
the gold standard in the treatment of herpetic infections [3]. 
Such infections have become an important public health 
issue, mainly due to the HSV ability to cause acute and 
recurrent infections, as well as the emergence of resistant 
strains, which hinder the management of herpesvirus infec-
tions [4–6]. New anti-herpes drugs are therefore needed.

Cardenolides are cardiac glycosides mainly found in plant 
species, such as Nerium oleander L., Asclepias curassavica L. 
(Apocynaceae), Digitalis lanata Ehrh., and Digitalis purpu-
rea L. (Plantaginaceae). These compounds have been used 
clinically for over 200 years to treat heart diseases [7] and 
are characterized by their powerful cardiotonic action [8]. 
The mechanism of their cardiotonic action occurs through 
the inhibition of  Na+/K+-ATPase, involved in the  Na+/K+ 
pump mechanism dependent on these ions, and promoting 
cardiac muscle contraction [9].

Despite the wide use of cardenolides as positive inotropic 
agents, the investigation of their effects on other patholo-
gies has intensified in recent years, disclosing new potential 
therapeutic applications. Among them, their cytotoxic and 
antitumor effects recently reviewed by Cerella et al. [10], 
De et al. [11], Diederich et al. [12], Schneider et al. [13] and 
El-Seedi et al. [14], as well as their anti-inflammatory [15], 
antiprotozoal [16], anti-oxidant and anti-aging [17] activities 
can be cited. Another suggested possibility is their potential 
antiviral action, as reported by several authors against ade-
novirus [18], chikungunya virus [19], coronavirus [20, 21], 
cytomegalovirus [22–24], dengue virus [25], herpes virus 
[26–28], HIV [29–31], human papillomarivus (HPV) [32], 
influenza virus [33–35], and respiratory syncytial virus [36] 
replication. The effects of six well-known cardiac glycosides 
(digoxin, digitoxin, ouabain, convallatoxin, G-strophanthin 
and lanatoside C) on viral biology and the mechanisms by 

which they impair the replication of different RNA and DNA 
viruses were recently compiled [37]. Most of these studies 
only reported the antiviral activity of cardenolides, and it 
is required to understand the mechanistic aspects involved 
and how the compounds really act to further evaluate their 
potential therapeutic application.

As mentioned above, new antiviral therapies are currently 
needed, mainly for treating drug-resistant infections. In this 
sense, our research group had therefore conducted studies 
with natural [26] and semisynthetic cardenolides [38]. In pre-
vious work, we reported the semisynthesis of 16 new deriva-
tives based on the scaffold of digitoxigenin and demonstrated 
their anti-HSV-1 (KOS and 29-R strains) and anti-HSV-2 
(333 strain) activities. Two derivatives emerged as the most 
promising compounds from this screening – C10 (3β-[(N-(2-
hydroxyethyl)aminoacetyl]amino-3-deoxydigitoxigenin) and 
C11 (3β-(hydroxyacetyl)amino-3-deoxydigitoxigenin) – and 
they were selected in the present study for detailed investiga-
tion of the mechanism of their anti-HSV action.

Materials and methods

Compounds, viruses and cell line

C10 and C11 (Fig.1) were synthesized, and their chemi-
cal structures and purity were confirmed as described pre-
viously [38], within an ongoing Brazil-Germany bilateral 
partnership.

All assays were performed on Vero cells (ATCC: 
CCL81) grown in Eagle’s minimum essential medium 
(MEM; Cultilab, Campinas, SP, Brazil) supple-
mented with 10% fetal bovine serum (FBS; Gibco, 
Carlsbad, CA, USA) and maintained at 37 °C 
in a humidified atmosphere containing 5%  CO2.

HSV-1 (KOS and 29-R strains, which are ACV-sensitive 
and ACV-resistant, respectively; Faculty of Pharmacy, Uni-
versity of Rennes I, Rennes, France) and HSV-2 (333 strain; 
Department of Clinical Virology, Göteborg University, 

Fig. 1  Chemical structures of C10 and C11 
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Göteborg, Sweden) viral stocks were propagated on Vero 
cells. They were titrated based on plaque-forming units 
(PFU), counted by plaque assay as described previously by 
Burleson et al. [39], and stored at -80 °C.

Evaluation of the anti‑herpes mechanism of action

C10 and C11 were selected for study based on their high 
selectivity indices (SI =  CC50 /  IC50) obtained from anti-
herpes screening as reported by Boff et al. [38]. The elucida-
tion of their mechanisms of action was performed using the 
assays described below.

Plaque number reduction assay

This assay was performed as described by Boff et al. [40]. 
Briefly, confluent cell monolayers (2.5 ×  105 cells per well) 
were infected with approximately 100 PFU of each virus 
strain [HSV-1 (KOS and 29-R strains) and HSV-2 (333 
strain)] for 1 h at 37 °C. Treatments were performed by add-
ing non-toxic concentrations (0.0625, 0.125, 0.25, 0.5 and 
1.0 µM) of the samples after virus infection (post infection 
treatment). Cells were then washed with phosphate-buffered 
saline (PBS), overlaid with MEM containing 1.5% carbox-
ymethylcellulose (CMC; Sigma-Aldrich, St. Louis, MO, 
USA) in the presence or absence of the samples, and incu-
bated for 48 h. Cells were fixed and stained with naphthol 
blue-black (Sigma-Aldrich), and viral plaques were counted 
using a stereomicroscope. The concentration of each sample 
that reduced viral replication by 50%  (IC50) when compared 
to untreated controls was estimated. Acyclovir (ACV) was 
used as a positive control.

Virucidal assay

This assay followed the procedures described by Silva et al. 
[41]. Mixtures of equal volumes of C10 and C11 at ten dif-
ferent concentrations (1/5 to 100 ×  IC50) and 4 ×  104 PFU 
of HSV-1 or HSV-2 in serum-free MEM were co-incubated 
for 15 min at 4 °C or 37 °C. C10 and C11 were then diluted 
to non-inhibitory concentrations (1:100) to determine the 
residual infectivity by plaque number reduction assay as 
described above.

Pretreatment assay

This assay was conducted as described by Bertol et al. [26]. 
Confluent cell monolayers were pretreated with ten different 
concentrations (1/32 to 5 ×  IC50) of the samples for 3 h at 
37 °C. Then, cells were infected with 100 PFU of HSV-1 or 

HSV-2 per well and treated as described above for the plaque 
number reduction assay. ACV was used as an internal control.

Simultaneous treatment assay

This assay was executed as described by Argenta et al. [42]. 
Confluent cell monolayers were infected with HSV-1 or 
HSV-2 with simultaneous addition of the samples at ten dif-
ferent concentrations (1/32 to 5 ×  IC50). Further procedures 
are described above for the plaque number reduction assay. 
ACV was used as an internal control.

Adsorption, post‑adsorption and penetration assays

These assays were performed following the general proce-
dures described by Silva et al. [41]. Dextran sulfate (DEX-S; 
Sigma-Aldrich) was used as a positive control throughout 
the different assays. For the attachment assay, confluent cell 
monolayers were pre-chilled at 4 °C for 30 min, exposed to 
a mixture of 100 PFU of HSV-1 or HSV-2 per well in the 
absence (viral control) or presence of the samples at 10 dif-
ferent concentrations (1/32 to 5 ×  IC50) and incubated at 4 °C  
for an additional 2 h. Unabsorbed viruses were removed 
by washing with cold PBS; cells were overlaid with CMC 
medium and treated as described above for the plaque num-
ber reduction assay.

For the post-attachment assay, confluent cell monolayers 
were pre-chilled at 4 °C for 30 min and incubated with 100 
PFU of HSV-1 or HSV-2 per well at 4 °C for an additional 2 h  
to allow stable attachment of viruses without fusion with 
cell membranes. The samples were then added at 10 differ-
ent concentrations (1/32 to 5 ×  IC50), and the infected cells 
were incubated again at 4 °C for 2 h and treated as described 
above for the plaque number reduction assay.

For the penetration assay, 100 PFU of HSV-1 or HSV-2 
per well were adsorbed for 2 h at 4 °C onto confluent cell 
monolayers that had been pre-chilled at 4 °C for 30 min (at 
this temperature the viruses can bind but cannot penetrate the 
cells). Then, the temperature was shifted to 37 °C for 5 min 
to allow virus penetration, and the cells were treated with 
10 different concentrations of the samples (1/32 to 5 ×  IC50) 
and incubated for 1 h at 37 °C. After incubation, unpen-
etrated viruses were inactivated with citrate buffer (pH 3.0)  
for 1 min. Cells were washed with PBS and treated as 
described above for the plaque number reduction assay.

Western blot analyses

To evaluate whether the compounds being tested inter-
fere with HSV-1 (KOS strain) protein expression, experi-
ments were performed following the procedures described 
by Argenta et al. [42]. Briefly, confluent cell monolayers 
were infected or not with HSV-1 at an MOI of 0.2 for 1 h  
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at 37 °C. Residual virus particles were then removed with 
PBS, and the cells were treated with five different concen-
trations of the samples (1/16, 1/8, 1/4, 1/2 and 1 ×  IC50)  
or 5 µM of ACV (positive control) for 18 h (one viral 
replication cycle). The cells were then lysed, and protein 
quantification was carried out [43]. The protein content 
was separated electrophoretically in a 10% SDS-poly-
acrylamide gel and electroblotted onto nitrocellulose 
membranes (Schleicher & Schuell, Dassel, Germany). 
After blocking, the membranes were incubated overnight 
with anti-ICP27 (1:1000, Millipore, Billerica, MA, USA), 
anti-UL42 (1:1000, Millipore), anti-gD (1:1000, Santa 
Cruz Biotechnology, Santa Cruz, CA, USA) and anti-β-
actin antibodies (1:5000, Millipore). The last of these was 
used as a control for total protein loading. After washing, 
the membranes were incubated for 1 h with the respective 
secondary antibodies conjugated to horseradish peroxi-
dase. Protein bands were revealed using Pierce Enhanced 
Chemiluminescence ECL Western Blotting substrate 
(Thermo Scientific, Rockford, IL, USA) according to the 
manufacturer’s instructions. Images were acquired using a 
Bio-Rad ChemiDocTM MP System and digitalized using 
the program Image Lab, version 4.1. Relative densitom-
etry data for the blots were analyzed using ImageJ free 
software.

Viral release assay

This assay followed the procedures described by Bertol 
et al. [26], and the percentages of inhibition were calculated 
according to Su et al. [28]. Briefly, confluent cell monolay-
ers were infected with HSV-1 or HSV-2 at MOI 0.4 for 1 h. 
Then, cell monolayers were washed, and different concentra-
tions (1/2, 1 and 2 ×  IC50) of the samples were added to the 
cells for 24 h at 37 °C, after which the supernatants and cell 
pellets were collected separately. Pellets were frozen and 
thawed three times before virus titration by plaque num-
ber reduction assay as described above. Digitoxin (Sigma-
Aldrich) was used as a positive control.

Viral plaque size reduction assay

This assay was conducted as described by Argenta et al. [42]. 
Different concentrations (0.0625, 0.125, 0.25, 0.5 and 1 µM) 
of the samples were added to Vero cells after infection for 
1 h with 100 PFU of HSV-1 or HSV-2. Further procedures 
were performed as described above for the plaque number 
reduction assay. After staining, images of 20 viral plaques 
formed in the presence or absence (viral control) of each 
concentration of the compounds were captured using a digi-
tal camera coupled to an Olympus IX71 inverted microscope 

(Center Valley, PA, USA). The area of each viral plaque was 
determined using the ImageJ free software.

Statistical analysis

The mean values ± standard deviations are representa-
tive of three independent experiments. Statistical analysis 
were performed by ANOVA followed by post-hoc tests as 
indicated.

Results

Anti‑herpes mechanism of action

According to Boff et al. [38], the initial screening of 16 new 
cardenolide derivatives against HSV-1 (KOS and 29-R strains) 
and HSV-2 (333 strain) showed that C10 and C11 exhib-
ited no relevant cytotoxic effects on Vero cells (>300 µM)  
and displayed the highest antiviral potential  [IC50 values of 
C10 and C11, respectively: 0.23 and 0.24 µM against HSV-1 
(KOS strain); 0.18 and 0.19 µM against HSV-1 (29-R strain); 
and 0.27 and 0.30 µM against HSV-2 (333 strain)]. SI val-
ues were calculated based on their  CC50 and  IC50 values and 
found to be promising for both compounds. The SI values 
for C10 and C11 were as follows: HSV-1 (KOS strain) 1,304 
and 1,250; HSV-1 (29-R strain) 1,667 and 1,579; HSV-2 (333 
strain) 1,111 and 1,000, respectively. These values are simi-
lar to or even higher than those of acyclovir [HSV-1 (KOS 
strain) 1,449 and HSV-2 (333 strain) 619] [38].

Virucidal activity

Even at concentrations 100 times higher than their  IC50 val-
ues, as described above [38], the treatments were not able to 
inactivate all virus strains tested (data not shown).

Pretreatment effects

Treatment of Vero cells with both compounds at 1/32 to 5 × 
 IC50 before virus inoculation did not affect HSV-1 or HSV-2 
replication, suggesting that they did not have prophylactic 
effects (data not shown).

Effects on the early stages of viral replication

In the same way, simultaneous treatment did not inhibit HSV 
replication, suggesting that the next steps of viral replica-
tion (adsorption, post-adsorption and penetration) were not 
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affected. To confirme this finding, each of these steps was 
investigated individually, and the results confirmed that nei-
ther compound affected the early stages of viral replication 
(data not shown).

Effects on the expression of viral proteins

Since C10 and C11 did not interfere in the first steps of 
HSV-1 and HSV-2 replication, their effects on HSV-1 pro-
tein expression were evaluated by Western blot analyses. 
Fig. 2A shows a representative blot of the results obtained 
after 18 h of treatment (one HSV replication cycle) with C10 
and C11 (1/16, 1/8, 1/4, 1/2 and 1 ×  IC50) or ACV (5 µM),  
and Fig. 2B shows the ratio of the amount of each viral pro-
tein to the amount of β-actin protein.

The compounds C10 (at concentrations of 1/4, 1/2 and 
1 ×  IC50) and C11 (at concentrations of 1/2 and 1 ×  IC50) 
completely abolished the expression of UL42 (β) and  
gD (γ) proteins, and partially reduced that of ICP27 (α) in a 
concentration-independent manner (Fig. 2A).

Effects on viral release

The ability of C10 and C11 to interfere with virus release 
was investigated by determining the intra- and extracellu-
lar HSV-1 and HSV-2 titers. Fig. 3 shows that both com-
pounds, at all tested concentrations, significantly reduced the 
extra- and intracellular titers of HSV. The highest activity 
was against HSV-1 (29-R strain). At 1 ×  IC50, virus release 
was inhibited by 97% (C10), 96% (C11) and 95% (digitoxin, 
positive control).

Effects on viral plaque size

The effects of different concentrations of C10 and C11 on 
the cell-to-cell spread of HSV-1 and HSV-2 were evalu-
ated using a viral plaque size reduction assay. As shown in 
Fig. 4A and B, when compared to viral control, both com-
pounds significantly reduced the areas of the viral plaques 
that were formed. The strongest reduction detected (C10 
from 79 to 100% and C11 from 73 to 100%) was against 
HSV-1 (29-R strain), since the compounds almost com-
pletely closed the plaque area at the lowest concentration 
tested.

Discussion

The antiviral action is considered one of the new therapeu-
tic possibilities of cardenolides besides their use as posi-
tive inotropic agents [44]. In the last decade, studies have 
highlighted these compounds as potent inhibitors of her-
pesvirus, as shown by Bertol et al. [26], Dodson et al. [27], 

and Su et al. [28]. Recently, our research group published 
the anti-herpes and cytotoxic screenings of 16 new semi-
synthetic cardenolides [38]. The compounds with the best 
anti-HSV potential were C10 and C11, and for this reason, 
several experiments were carried out to tentatively propose 
their mechanisms of action. In this study, both compounds 
were tested against HSV-1 (KOS and 29-R strains, which are 
ACV-sensitive and ACV-resistant, respectively) and HSV-2 
(333 strain).

One approach that has great potential applicability in the 
therapy of sexually transmitted diseases, including those 
caused by HSV, is the topical application of drugs that can 
permanently inactivate viral particles [45]. However, in 
this study, C10 and C11 were not able to inactivate HSV-1 
and HSV-2. This indicates that these compounds do not act 
directly on viral particles before they entered into the cells, 
which agrees with the findings of studies performed with 
other cardenolides [26, 28, 46, 47].

In order to detect possible preventive effects, C10 and 
C11 were evaluated directly on Vero cells in the absence 
of the viruses. This approach also did not affect HSV repli-
cation, attesting that both compounds did not present pro-
phylactic effects. These findings are in accordance with the 
results obtained by Bertol et al. [26] for glucoevatromono-
side, a natural cardenolide.

Viruses and compounds were then added simultaneously 
to investigate if the initial phases of the HSV-1 and HSV-2 
replication cycles were affected by C10 and C11. The results 
demonstrated that they did not act interfering with the early 
events of HSV infection, as it was confirmed posteriorly by 
the viral adsorption, post adsorption and penetration assays. 
These results are in line with the findings of the simulta-
neous treatment and corroborate the outcomes from Bertol 
et al. [26], Dodson et al. [27] and Su et al. [28].

It is well established that the HSV replication cycle is 
divided in six stages: adsorption, viral entry into host cells, 
expression of viral genes, DNA replication, assembly, and 
release of new viral particles [2, 48]. The results obtained 
so far demonstrate that C10 and C11 do not affect the initial 
phases of HSV-1 and HSV-2 replication, do not inactivate 
these viruses, and have no prophylactic effects.

To identify the stages of the HSV replication cycle at 
which C10 and C11 could be acting, Western blot experi-
ments were conducted. As already mentioned here, α genes 
regulate viral replication, β genes are responsible for DNA 
synthesis and packaging, and γ genes synthesize the struc-
tural components of the viruses [1]. Although both com-
pounds gave promising results, C10 significantly reduced 
UL42 (β) and gD (γ) protein expression at a lower concen-
tration than C11 and completely inhibited the expression 
of these proteins up to 1/4 ×  IC50. This suggests that C10 
and C11 could interfere with the synthesis of viral DNA 
and structural components. Additionally, both compounds 
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Fig. 2  Effects of C10 and C11 on HSV-1 (KOS strain) protein 
expression. (A) Confluent Vero cells were infected with HSV-1 (MOI 
0.2) and treated with 1/16, 1/8, 1/4, 1/2 and 1 ×  IC50, or 5  µM of 
ACV. Lysates were collected after 18 h of incubation, and the pro-
teins were separated by SDS-10% PAGE and analyzed using antibod-
ies specific for the viral ICP27, UL42, and gD proteins. CC (cell con-
trol), uninfected and untreated Vero cells; VC (viral control), infected 

but not treated Vero cells; ACV, acyclovir. Equal protein loading was 
confirmed by probing for β-actin. (B) The graph indicates the ratio 
of the amount of each viral protein to that of β-actin. ns, not signifi-
cant; ####, p < 0.0001; ***, p < 0.001; ****, p < 0.0001; §§§§, p < 
0.0001 vs. the respective viral controls (two-way ANOVA, Dunnett’s 
post-hoc test)
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inhibited ICP27 (α) protein expression less than the other 
two proteins, but still significantly. At the molecular level, 
these results suggest that C10 and C11 interfere with the 
expression of all proteins evaluated, more intensively on the 
expression of early and late proteins in comparison with the 
immediate early proteins.

It is known that the genomic homology of HSV-2 is 
almost identical to that of HSV-1, and these viruses express 
the same proteins whose expression was evaluated in this 
work (gD, UL42 and ICP27) [49–51]. Earlier studies have 
shown that different samples, such as a cranberry extract 
[52] and a diterpene isolated from Andrographis paniculata 
Nees [53] were able to inhibit in a similar way the expres-
sion of these HSV-1 proteins as much as HSV-2 ones. Here, 
although the reduction of gD, UL42 and ICP27 expression 
by C10 and C11 was only tested using HSV-1 (KOS strain), 
all other experiments were performed against both strains 
of HSV-1 (KOS and 29-R) and strain 333 of HSV-2. The 

results showed similar inhibition profiles for all viral repli-
cation steps evaluated. Consequently, we presume that both 
compounds would act in the same way against HSV-1 (29-R 
strain) and HSV-2 replication by inhibiting the expression 
of the same proteins.

The capacity of C10 and C11 to block viral release 
was investigated by measuring the intra- and extracellular 
titers of HSV-1 and HSV-2. Both compounds reduced HSV 
release as much as the positive control (digitoxin), and for 
HSV-1 (29-R strain), this inhibition was greater than 80% 
at the lowest concentration tested. These results, together 
with those obtained by Western blot analyses, suggest that 
both compounds completely or partially inhibit the inter-
mediate and final phases of HSV replication.

It is well established that the released viruses infect 
the adjacent cells of the infected tissues, replicate and 
continue to infect other cells through viral intercellular 
propagation (cell-to-cell spread), which is relevant to 
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productive primary or recurrent infections establishment 
[54, 55]. C10 and C11 reduced significantly the areas of 
formed viral plaques when compared to viral controls, and 
these results could be a consequence of the inhibition of 
viral release.

Several studies have demonstrated the anti-herpes activity 
of natural products, some of which interfere with early steps 
[41, 42, 56–64], while a few affect the last steps of HSV rep-
lication [65–68], as was demonstrated for C10 and C11. For 
this reason, both cardenolides could be used in combination 
with other natural products to ensure that different stages of 

HSV replication would be inhibited, for example with trans-
resveratrol, for which significant anti-HSV activity has also 
been described [69].

The mechanism by which cardenolides affect several steps 
of HSV replication could be related to the inhibition of  Na+/
K+-ATPase in host cells. Many studies have demonstrated 
the modulation of  Na+/K+-ATPase functions in host cells 
by DNA viruses (adenoviruses [18], cytomegalovirus [23, 
70–72], and HSV [27, 28]), and RNA viruses (chikungunya 
virus [19, 73], coronaviruses [20, 74, 75], respiratory syn-
cytial virus [76, 77], Ebola virus [78, 79], influenza virus 
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Fig. 4  Effects of C10 and C11 on viral plaque size of HSV-1 (KOS 
and 29-R strains) and HSV-2 (333 strain). (A) The areas of 20 lysis 
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pounds (0.0625 to 1.0 μM) were measured, and (B) images formed 

in the presence and absence (viral control) of each concentration of 
C10 and C11 were captured. ns, not significant; *, p < 0.05; **, p < 
0.01; and ****, p < 0.0001 vs. the respective viral controls (two-way 
ANOVA, Dunnett’s post-hoc test)
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[33, 80, 81], and HIV [30, 31, 82]). By activating signal-
ing cascades or by altering the concentration of intracellular 
ions, the binding of cardenolides to  Na+/K+-ATPase seems to 
create an unfavorable environment for viral replication. Ber-
tol et al. [26] showed that the inhibition of  Na+/K+-ATPase 
caused by glucoevatromonoside was correlated with virus 
release and viral protein synthesis due to a reduction in the 
 K+ concentration in the cell. Cohen et al. [23] found that the 
inhibitory activity of cytomegalovirus replication by conval-
latoxin was due to a decrease in immediate-early gene expres-
sion and that the antiviral potency depends on the structure of 
cardiac glycosides and their specific interactions with  Na+/
K+-ATPase. It was also shown that influenza virus replica-
tion was impaired by ouabain through the inhibition of viral 
protein translation and a decrease in the intracellular  K+ con-
centration [37]. Finally, Boff et al. [38] showed that C10 and 
C11 inhibited  Na+/K+-ATPase, and a reduction in intracel-
lular  K+ concentration could explain the inhibitory activity of 
those steps of viral infection. In summary, the main antiviral 
mechanisms suggested for both DNA and RNA viruses are 
decreased transcription of viral genes and impaired synthesis 
of viral proteins due to interference with the host translational 
machinery, such as the inhibition of  Na+/K+-ATPase [37].

Structural differences among cardenolides, such as the 
substituents on the aglycone moiety and the number of 
sugars, may vary and alter their antiviral activity. Most of 
the cardenolides tested by Bertol et al. [26], Dodson et al. 
[27], and Su et al. [28] presented one or more sugar moie-
ties bind to C3, unlike the cardenolides C10 and C11. Both 
of which have substituted amine groups at C3 and are able 
to inhibit HSV replication at nanomolar concentrations, but 
not with the same potency as cardenolides bearing sugars 
at C3. Thus, the sugar moiety, although not essential for 
anti-herpes activity, nevertheless influences this activity 
positively. Moreover, C10 was found to be more active than 
C11 in all experiments, and therefore, we hypothesize that 
the secondary amine group located on the side chain might 
also contribute to the antiviral activity. Consistent with this, 
Fytas et al. [83] and Tataridis et al. [84] showed that the 
presence of additional amino groups in adamantane deriva-
tives increased their antiviral activity.

Even though previous works have addressed the anti-
herpes effects of different cardenolides, the investigation 
of the mechanism of anti-herpes action of C10 and C11 
[HSV-1 (29-R strain) and HSV-2 (333 strain)] have not been 
explored so far, and we described it herein for the first time.

Conclusions

In conclusion, our findings suggest that C10 and C11 inter-
fere mainly with the late steps of HSV replication, i.e., viral 
replication [HSV-1 (KOS strain)], assembling, release of 

new viruses and viral intercellular propagation [HSV-1 
(KOS and 29-R strains) and HSV-2 (333 strain)]. In a minor 
extension, they also interfere with the intermediate stages of 
viral replication but not with the early steps. Additionally, 
they were not virucidal and have no prophylactic effects. 
These results encourage us to continue studying carde-
nolides as an alternative for the treatment of herpes simplex 
virus infections. Despite both compounds presented promis-
ing results, C10 was more potent with a lower  IC50 value and 
the best selectivity index. Wherefore, they can be considered 
new bioactive molecules with great potential as anti-herpes 
drug candidates mainly for HSV-1 (29-R strain), which is 
resistant to ACV treatment.
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