Skip to main content
Log in

Coherent structures and flux contribution over an inhomogeneously irrigated cotton field

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

The turbulence data measured at two levels (i.e., 8.7 and 2.7 m) in the Energy Balance Experiment (EBEX), which was conducted in San Joaquin Valley in California during the period from July 20 to August 24, 2000, are used to study the characteristics of coherent structures over an irrigated cotton field. Patch-to-patch irrigation in the field generated the dry-to-wet horizontal advection and the oasis effects, leading to the development of a stably internal boundary layer (SIBL) in the late mornings or the early afternoons. The SIBL persisted in the rest of the afternoons. Under this circumstance, a near-neutral atmospheric surface layer (ASL) developed during the period with a stratification transition from the unstable to stable conditions during the daytime. Therefore, EBEX provides us with unique datasets to investigate the features of coherent structures that were generated over the patches upstream and passed by our site in the unstable ASL, the near-neutral ASL, and the SIBL. We use an objective detection technique and the conditional average method that is developed based on the wavelet analysis. Our data reveal some consistencies and inconsistencies in the characteristics of coherent structures as compared with previous studies. Ramp-like structures and sweep–ejection cycles under the daytime SIBL have similar patterns to those under the nocturnal stable ASL. However, some features (i.e., intermittence) are different from those under the nocturnal stable ASL. Under the three stratifications, thermal and mechanical factors in the ASL perform differently in affecting the ramp intensity for different quantities (i.e., velocity components, temperature, and specific humidity), leading to coherent structures that modulate turbulence flow and alter turbulent transfer differently. It is also found that coherent structures contribute about 10–20% to the total fluxes in our case with different flux contributions under three stratifications and with higher transporting efficiency in sensible heat flux than latent heat and momentum fluxes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Antonia RA, Chambers AJ, Friehe CA, Van Atta CW (1979) Temperature ramps in the atmospheric surface layer. J Atmos Sci 36:99–108

    Article  Google Scholar 

  • Barthlott C, Drobinski P, Fesquet C, Dubos T, Pietras C (2007) Long-term study of coherent structures in the atmospheric surface layer. Boundary-Layer Meteorol 125:1–24

    Article  Google Scholar 

  • Bergström H, Högström U (1989) Turbulent exchange above a pine forest. II. Organized structures. Boundary-Layer Meteorol 49:231–263

    Article  Google Scholar 

  • Brunet Y, Collineau S (1994) Diurnal and nocturnal turbulence above a maize crop. In: Foufoula-Georgiou E, Kumar P (eds) Wavelets in geophysics. Academic, New York, pp 129–150

    Google Scholar 

  • Brunet Y, Irvine MR (2000) The control of coherent eddies in vegetation canopies: streamwise structure spacing, canopy shear scale and atmospheric stability. Boundary-Layer Meteorol 94:139–163

    Article  Google Scholar 

  • Cava D, Giostra U, Siqueira MB, Katul GG (2004) Organised motion and radiative perturbations in the nocturnal canopy sublayer above an even-aged pine forest. Boundary-Layer Meteorol 112:129–157

    Article  Google Scholar 

  • Chen J, Hu F (2003) Coherent structures detected in atmospheric boundary-layer turbulence using wavelet transforms at Huaihe river basin, China. Boundary-Layer Meteorol 107:429–444

    Article  Google Scholar 

  • Chen H, Chen J, Hu F, Zeng Q (2004) The coherent structure of water vapour transfer in the unstable atmospheric surface layer. Boundary-Layer Meteorol 111:543–552

    Article  Google Scholar 

  • Collineau S, Brunet Y (1993a) Detection of turbulent coherent motions in a forest canopy. Part I: wavelet analysis. Boundary-Layer Meteorol 65:357–379

    Google Scholar 

  • Collineau S, Brunet Y (1993b) Detection of turbulent coherent motions in a forest canopy. Part II: time-scales and conditional averages. Boundary-Layer Meteorol 66:49–73

    Article  Google Scholar 

  • Farge M (1992) Wavelet transforms and their applications to turbulence. Annu Rev Fluid Mech 24:395–457

    Article  Google Scholar 

  • Feigenwinter C, Vogt R (2005) Detection and analysis of coherent structures in urban turbulence. Theor Appl Climatol 81:219–230

    Article  Google Scholar 

  • Finnigan J (1979) Turbulence in waving wheat. II. Structure of momentum transfer. Boundary-Layer Meteorol 16:213–236

    Article  Google Scholar 

  • Finnigan J (2000) Turbulence in plant canopies. Annu Rev Fluid Mech 32:519–571

    Article  Google Scholar 

  • Foken T (2008) The energy balance closure problem: an overview. Ecol Appl 18:1351–1367

    Article  Google Scholar 

  • Gao W, Li BL (1993) Wavelet analysis of coherent structure at the atmosphere–forest interface. J Appl Meteor 32:1717–1725

    Article  Google Scholar 

  • Gao W, Shaw RH, Paw UKT (1989) Observation of organized structure in turbulent flow within and above a forest canopy. Boundary-Layer Meteorol 47:349–377

    Article  Google Scholar 

  • Gao W, Shaw RH, Paw UKT (1992) Conditional analysis of temperature and humidity microfronts and ejection/sweep motions within and above a deciduous forest. Boundary-Layer Meteorol 59:35–57

    Article  Google Scholar 

  • Katul GG, Kuhn G, Schieldge J, Hsieh CI (1997) The ejection–sweep character of scalar fluxes in the unstable surface layer. Boundary-Layer Meteorol 83:1–26

    Article  Google Scholar 

  • Kohsiek W, Liebethal C, Foken T, Vogt R, Oncley SP, Bernhofer C, de Bruin HAR (2007) The energy balance experiment EBEX-2000. Part III: behaviour and quality of the radiation measurements. Boundary-Layer Meteorol 123:55–75

    Article  Google Scholar 

  • Krusche N, De Oliveira AP (2004) Characterization of coherent structures in the atmospheric surface layer. Boundary-Layer Meteorol 110:191–211

    Article  Google Scholar 

  • Kumar P, Foufoula-Georgiou E (1994) Wavelet analysis in geophysics: an introduction. In: Foufoula-Georgiou E, Kumar P (eds) Wavelet analysis and its application. Academic, San Diego, pp 1–43

    Google Scholar 

  • Lu CH, Fitzjarrald DR (1994) Seasonal and diurnal variations of coherent structures over a deciduous forest. Boundary-Layer Meteorol 69:43–69

    Article  Google Scholar 

  • Mauder M, Jegede OO, Wimmer F, Foken T (2007a) Surface energy balance measurements at a tropical site in West Africa during the transition from dry to wet season. Theor Appl Climatol 89:171–183

    Article  Google Scholar 

  • Mauder M, Oncley SP, Vogt R, Weidinger T, Ribeiro L, Bernhofer C, Foken T, Kohsiek W, De Bruin HAR, Liu H (2007b) The energy balance experiment EBEX-2000. Part II: Intercomparison of eddy-covariance sensors and post-field data processing methods. Boundary-Layer Meteorol 123:39–54

    Article  Google Scholar 

  • Oncley SP, Foken T, Vogt R, Kohsiek W, de Bruin HAR, Bernhofer C, Christen A, van Gorsel E, Grantz D, Feigenwinter C, Lehner I, Liebethal C, Liu H, Mauder M, Pitacco A, Ribeiro L, Weidinger T (2007) The energy balance experiment EBEX-2000. Part I: overview and energy balance. Boundary-Layer Meteorol 123:1–28

    Article  Google Scholar 

  • Paw UKT, Brunet Y, Collineau S, Shaw RH, Maitani T, Qiu J, Hipps LE (1992) On coherent structures in turbulence above and within agricultural plant canopies. Agric For Meteorol 61:55–68

    Article  Google Scholar 

  • Poggi D, Porporato A, Ridolfi L, Albertson JD, Katul GG (2004) The effect of vegetation density of canopy sub-layer turbulence. Boundary-Layer Meteorol 111:565–587

    Article  Google Scholar 

  • Qiu J, KT PU, Shaw RH (1995) Pseudo-wavelet analysis of turbulence patterns in three vegetation layers. Boundary-Layer Meteorol 72:177–204

    Article  Google Scholar 

  • Raupach MR, Finnigan JJ, Brunet Y (1996) Coherent eddies and turbulence in vegetation canopies: the mixing-layer analogy. Boundary-Layer Meteorol 78:351–382

    Article  Google Scholar 

  • Robinson SK (1991) Coherent motions in the turbulent boundary layer. Annu Rev Fluid Mech 23:601–639

    Article  Google Scholar 

  • Shaw RH, Tavangar J, Ward DP (1983) Structure of the Reynolds stress in a canopy layer. J Clim Appl Meteorol 22:1922–1931

    Article  Google Scholar 

  • Thomas C, Foken T (2005) Detection of long-term coherent exchange over spruce forest using wavelet analysis. Theor Appl Climatol 80:91–104

    Article  Google Scholar 

  • Thomas C, Foken T (2007a) Flux contribution of coherent structures and its implication for the exchange of energy and matter in a tall spruce canopy. Boundary-Layer Meteorol 123:317–337

    Article  Google Scholar 

  • Thomas C, Foken T (2007b) Organised motion in a tall spruce canopy: temporal scales, structure spacing and terrain effects. Boundary-Layer Meteorol 122:123–147

    Article  Google Scholar 

  • Thomas C, Mayer JC, Meixner FX, Foken T (2006) Analysis of low-frequency turbulence above tall vegetation using a Doppler sodar. Boundary-Layer Meteorol 119:563–587

    Article  Google Scholar 

  • Wesson KH, Katul GG, Siqueira MB (2003) Quantifying organization of atmospheric turbulent eddy motion using nonlinear time series analysis. Boundary-Layer Meteorol 106:507–525

    Article  Google Scholar 

  • Wilczak JM (1984) Large-scale eddies in the unstably stratified atmospheric surface layer. Part I: velocity and temperature structure. J Atmos Sci 41:3537–3550

    Article  Google Scholar 

  • Zhang G, Thomas C, Leclerc MY, Karipot A, Gholz HL, Binford M, Foken T (2007) On the effect of clearcuts on turbulence structure above a forest canopy. Theor Appl Climatol 88:133–137

    Article  Google Scholar 

  • Zhang Y, Liu H, Foken T, Williams QL, Liu S, Mauder M, Liebethal C (2010) Turbulence spectra and cospectra under the influence of large-scale coherent eddies in the energy balance experiment (EBEX). Boundary-Layer Meteorol (in revision)

Download references

Acknowledgments

Each participant in EBEX was funded primarily through his or her own institution, and some contributed personal resources. Funding for the deployment of NCAR facilities was provided by the National Science Foundation. Arrangement for use of the field site was facilitated by Bruce Roberts, Director of the University of California Cooperative Extension, Kings County. Westlake Farms generously provided both use of the land for this experiment and helped with logistical support. We are grateful to all of these people and organizations. Steven Oncley is especially acknowledged for his great efforts in organizing EBEX. We acknowledge support from NSF under AGS0847549. Yu Zhang’s Post-doc work was partly supported by NOAA Howard-NCAS under grant no. NA06OAR4810172. Heping Liu’s participation in EBEX was partly supported by City University of Hong Kong (grant 8780046 and SRG 7001038). We thank two anonymous reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heping Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Liu, H., Foken, T. et al. Coherent structures and flux contribution over an inhomogeneously irrigated cotton field. Theor Appl Climatol 103, 119–131 (2011). https://doi.org/10.1007/s00704-010-0287-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-010-0287-6

Keywords

Navigation