Skip to main content

Advertisement

Log in

Analysis of Low-Frequency Turbulence Above Tall Vegetation Using a Doppler Sodar

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

This study applies acoustic sounding to observe coherent structures in the roughness sublayer (RSL) above tall vegetated surfaces. Data were collected on 22 days during two separate field experiments in summer 2003. A quality control scheme was developed to ensure high data quality of the collected time series. The data analysis was done using both discrete and continuous wavelet transform. The flow in the RSL was found to be a superposition of dynamic Kelvin–Helmholtz instabilities and convective mixing. The characteristic time scales for coherent structures resulting from the dynamic instabilities were observed to be approximately 20–30 s while thermal eddies have much larger time scales of 190–210 s. The degree of vertical coherency in the RSL increases with the flow evolving from neutral to near-convective conditions. This increase in the degree of organisation is attributed to the evolution of attached thermal eddies. The coherent structures resulting from instabilities were found to be present throughout the RSL but do not contribute to the increased vertical coherency. An alternative conceptual approach for the definition of the RSL is proposed, which yields its maximum vertical extent to five times the canopy height.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akima, H.: 1970, ‘A New Method of Interpolation and Smooth Curve Fitting Based on Local Procedures’, J. Assc. Comp. Mach. 17, 589–602.

    Google Scholar 

  • Aubrun S., Koppmann R., Leitl B., Moellmann-Coers M., Schaub A. (2005). ‘Physical Modelling of an Inhomogeneous Finite Forest Area in a Wind Tunnel - Comparison with Field Data and Lagrangian Dispersion Calculations’. Agric. For. Meteorol. 129, 121–135

    Article  Google Scholar 

  • Bergström H., Högström U. (1989). ‘Turbulent Exchange above a Pine Forest. II. Organized Structures’. Boundary-Layer Meteorol. 49, 231–263

    Article  Google Scholar 

  • Brunet Y., Irvine M. (2000). ‘The Control of Coherent Eddies in Vegetation Canopies: Streamwise Structure Spacing, Canopy Shear Scale and Atmospheric Stability’. Boundary-Layer Meteorol. 94, 139–163

    Article  Google Scholar 

  • Chen J., Hu F. (2003). ‘Coherent Structures Detected in Atmospheric Boundary-Layer Turbulence Using Wavelet transforms at Huaihe River Basin, China’. Boundary-Layer Meteorol. 107, 429–444

    Article  Google Scholar 

  • Collineau S., Brunet Y. (1993a). ‘Detection of Turbulent Coherent Motions in a Forest Canopy. Part I: Wavelet Analysis’. Boundary-Layer Meteorol. 65, 357–379

    Google Scholar 

  • Collineau S., Brunet Y. (1993b). ‘Detection of Turbulent Coherent Motions in a Forest Canopy Part II: Time-Scales and Conditional Averages’. Boundary-Layer Meteorol. 66, 49–73

    Article  Google Scholar 

  • Coulter R., Wesely M. (1980). ‘Estimates of Surface Heat Flux from Sodar and Laser Scintillation Measurements in the Unstable Boundary Layer’. J. Appl. Meteorol. 19, 1209–1222

    Article  Google Scholar 

  • Crescenti G. (1998). ‘The Degradation of Doppler Sodar Performance Due to Noise: A Review’. Atmos. Environ. 32, 1499–1509

    Article  Google Scholar 

  • Donoho D.L., Johnstone I.M. (1994). ‘Ideal Spatial Adaptation by Wavelet Shrinkage’. Biometrika 81, 425–455

    Article  Google Scholar 

  • Finnigan J. (2000). ‘Turbulence in Plant Canopies’. Ann. Rev. Fluid Mech. 32, 519–571

    Article  Google Scholar 

  • Foken T., Göckede M., Mauder M., Mahrt L., Amiro B., Munger J. (2004). ‘Post-field Data Quality Control’. In: Lee X., Massman W.J., Law B. (eds). Handbook of Micrometeorology: A Guide for Surface Flux Measurements. Kluwer, Dordrecht, pp. 181–208

    Google Scholar 

  • Gao W., Shaw R.H., Paw U.K.T. (1989). ‘Observation of Organized Structures in Turbulent Flow within and above a Forest Canopy’. Boundary-Layer Meteorol. 47, 349–377

    Article  Google Scholar 

  • Gerstberger P., Foken T., Kalbitz K. (2004). ‘The Lehstenbach and Steinkreuz Catchments in NE Bavaria, Germany’. In: Matzner E.(eds). Biogeochemistry of Forested Catchments in a Changing Environment. Ecological Studies, No. 172, Vol. 172 Springer, Heidelberg, pp. 15–41

    Google Scholar 

  • Hall F.J., Edinger J., Neff W. (1975). ‘Convective Plumes in the Planetary Boundary Layer, Investigated with an Acoustic Echo Sounder’. J. Appl. Meteorol. 14, 513–523

    Article  Google Scholar 

  • Haugen D., Kaimal J.C. (1978). ‘Measuring Temperature Structure Parameters Profiles with an Acoustic Sounder’. J. Appl. Meteorol. 17, 895–899

    Article  Google Scholar 

  • Holschneider M. (1995). Wavelets, An Analysis Tool. Oxford University Press, New York 423 pp

    Google Scholar 

  • Katul G., Lai C.-T., Schaefer K., Vidakovic B., Albertson J., Ellsworth D., Oren R. (2001). ‘Multiscale Analysis of Vegetation Surface Fluxes: From Seconds to Years’. Adva. Water Resour. 24, 1119–1132

    Article  Google Scholar 

  • Katul G., Vidakovic B. (1998). ‘Identification of Low-Demensional Energy Containing/Flux Transporting Eddy Motion in the Atmospheric Surface Layer Using Wavelet Thresholding Methods’. J. Atmos. Sci. 55, 377–389

    Article  Google Scholar 

  • Koppmann R. (2003). ‘Emission and Chemical Transformation of Biogenic Volatile Organic Compounds (ECHO)’. AFO-2000 Newslett. 5, 7–10

    Google Scholar 

  • Kumar P., Foufoula-Georgiou E. (1994). ‘Wavelet Analysis in Geophysics: An Introduction’. In: Foufoula-Georgiou E., Kumar P. (eds). Wavelets in Geophysics. Vol. 4 of Wavelet Analysis and its Applications. Academic Press, San Diego, pp. 1–43

    Google Scholar 

  • Little C. (1969). ‘Acoustic Methods for the Remote Probing of the Lower Atmosphere’, in IEEE, Vol. 53, pp. 571–578.

  • Lu C., Fitzjarrald D. (1994). ‘Seasonal and Diurnal Variations of Coherent Structures over a Deciduous Forest’. Boundary-Layer Meteorol. 69, 43–69

    Article  Google Scholar 

  • Miller K., Rochwarger M. (1970). ‘On Estimates of Spectral Moments in the Presence of Colored Noise’, in IEEE Trans. Inf. Theory IT-16, pp. 303–308.

  • Neff, W.: 1975, ‘Quantitative Evaluation of Acoustic Echoes from the Planetary Boundary Layer’, TR ERL 322-WPL 38, NOAA.

  • Neff W., Coulter R. (1986). ‘Acoustic Remote Sensing’. In: Lenschow D., (eds). Probing the Atmospheric Boundary Layer. American Meteorological Society, Boston, pp. 201–239

    Google Scholar 

  • Novak M., Warland J., Orchansky A., Kettler R., Green S. (2000). ‘Wind Tunnel and Field Measurements of Turbulent Flow in Forests. Part I: Uniformly Thinned Stands’. Boundary-Layer Meteorol. 95, 457–495

    Article  Google Scholar 

  • Paw U.K.T., Brunet Y., Collineau S., Shaw R.H., Maitani T., Qiu J., Hipps L. (1992). ‘Evidence of Turbulent Coherent Structures in and above Agricultural Plant Canopies’. Agric. For. Meteorol. 61, 55–68

    Article  Google Scholar 

  • Petenko I., Argentini S., Bolignano A., Mastrantonio G., Viola A. (2004). ‘Time and Horizontal Scales of Convective Plumes at Mid-latitudes’. In: Anderson P., Bradley S., von Hunerbein S. (eds). 12th International Symposium on Acoustic Remote Sensing. British Antarctic Survey, Cambridge, UK

    Google Scholar 

  • Petenko I., Bezverkhnii V. (1999). ‘Temporal Scales of Convective Coherent Structures Derived from Sodar Data’. Meteorol. Atmosph. Phys. 71, 105–116

    Article  Google Scholar 

  • Poggi D., Porporato A., Ridolfi L., Albertson J.D., Katul G.G. (2004). ‘The Effect of Vegetation Density on Canopy Sub-layer Turbulence’. Boundary-Layer Meteorol. 111, 565–587

    Article  Google Scholar 

  • Raupach M.R., Finnigan J.J., Brunet Y. (1989). ‘Coherent Eddies in Vegetation Canopies’, in 4th Australasian Conference on Heat and Mass Transfer, Christchurch, New Zealand, pp. 75–90.

  • Raupach M.R., Finnigan J.J., Brunet Y. (1996). ‘Coherent Eddies and Turbulence in Vegetation Canopies: The Mixing-layer Analogy’. Boundary-Layer Meteorol. 78, 351–382

    Article  Google Scholar 

  • Spizzichino A. (1974). ‘Discussion of the Operating Conditions of a Doppler Sodar’. J. Geophys. Res. 79, 5585–5591

    Article  Google Scholar 

  • Taconet O., Weill A. (1982). ‘Vertical Velocity Field in the Convective Bounadry layer as observed with an Acoustic Doppler Sodar’. Boundary-Layer Meteorol. 23, 133–151

    Article  Google Scholar 

  • Tatarskii V. (1971). The Effects of the Turbulent Atmosphere on Wave Propagation. Moscow, 1967, Israel Program for Scientific Translations, U.S. Dept. of Commerce: Nauka.

  • Thomas C., Foken T. (2005). ‘Detection of Long-term Coherent Exchange over Spruce Forest Using Wavelet Analysis’. Theor. Appl. Climatol. 80, 91–104

    Article  Google Scholar 

  • Wesely M. (1976). ‘The Combined Effect of Temperature and Humidity Fluctuations on Refractive Index’. J. Appl. Meteorol. 15, 43–49

    Article  Google Scholar 

  • Wesson K.H., Katul G.G., Siqueira M. (2003). ‘Quantifying Organization of Atmospheric Turbulent Eddy Motion Using Nonlinear Time Series Analysis’. Boundary-Layer Meteorol. 106, 507–525

    Article  Google Scholar 

  • Williams A., Hacker J. (1993). ‘Interactions between Coherent Eddies in the Lower Convective Boundary Layer’. Boundary-Layer Meteorol. 64, 55–74

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Thomas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, C., Mayer, JC., Meixner, F.X. et al. Analysis of Low-Frequency Turbulence Above Tall Vegetation Using a Doppler Sodar. Boundary-Layer Meteorol 119, 563–587 (2006). https://doi.org/10.1007/s10546-005-9038-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-005-9038-0

Keywords

Navigation