Skip to main content
Log in

The role of kynurenines in the pathomechanism of amyotrophic lateral sclerosis and multiple sclerosis: therapeutic implications

  • Basic Neurosciences, Genetics and Immunology - Review article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Tryptophan is one of the essential amino acids, 80% of which is catabolised in the extrahepatic tissues by indoleamine-2,3-dioxygenase (IDO), the rate-limiting enzyme of the kynurenine pathway. Metabolites along the kynurenine pathway have been implicated to play a role in the pathomechanism of neuroinflammatory and neurodegenerative disorders. Changes in the concentration levels of kynurenines can shift the balance to pathological conditions. The ability to influence the metabolism towards the neuroprotective branch of the kynurenine pathway, i.e. towards kynurenic acid (KYNA) synthesis, may be one option in preventing neurodegenerative diseases. Three potential therapeutic strategies could be feasible to develop drugs to live up to expectations: (1) chemically related drugs with better bioavailability and higher affinity to the binding sites of excitatory receptors; (2) prodrugs of KYNA, which easily cross the blood–brain barrier combined with an inhibitor of organic acid transport for enhancement of the brain KYNA concentration; (3) inhibitors of enzymes of the kynurenine pathway. In this review, we focus on aspects of the pathomechanism and therapeutic possibilities of amyotrophic lateral sclerosis and multiple sclerosis that may be influenced by kynurenines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alberati-Giani D, Ricciardi-Castagloni P, Köhler C, Cesura AM (1996) Regulation of the kynurenine metabolic pathway by interferon-γ in murine cloned macrophages and microglial cells. J Neurochem 66:996–1004

    Article  PubMed  CAS  Google Scholar 

  • Amirkhani A, Rajda C, Arvidsson B, Bencsik K, Boda K, Seres E et al (2005) Interferon-beta affects the tryptophan metabolism in multiple sclerosis patients. Eur J Neurol 12:625–631

    Article  PubMed  CAS  Google Scholar 

  • Beal MF, Vécsei L (1992) Excitatory amino acids in the pathogenesis of neurodegenerative disorders. In: Vécsei L, Freese A, Swartz KJ, Beal MF (eds) Neurological disorders: novel experimental and therapeutic strategies. Ellis Horwood, Chichester, pp 39–74

    Google Scholar 

  • Bensimon G, Lacomblez L, Meininger V, the ALS/Riluzole study group (1994) A controlled trial of riluzole in amyotrophic lateral sclerosis. N Engl J Med 330:585–591

    Article  PubMed  CAS  Google Scholar 

  • Bordelon YM, Chesselet MF, Nelson D, Welsh F, Erecinska M (1997) Energetic dysfunction in quinolinic acid-lesioned rat striatum. J Neurochem 69:1629–1639

    Article  PubMed  CAS  Google Scholar 

  • Braidy N, Grant R, Adams S, Brew BJ, Guillemin GJ (2009) Mechanism for quinolinic acid cytotoxicity in human astrocytes and neurons. Neurotox Res 16:77–86

    Article  PubMed  CAS  Google Scholar 

  • Cammer W (2001) Oligodendrocyte killing by quinolinic acid in vitro. Brain Res 896:157–160

    Article  PubMed  CAS  Google Scholar 

  • Carpenedo R, Pittaluga A, Cozzi A et al (2001) Presynaptic kynurenate-sensitive receptors inhibit glutamate release. Eur J Neurosci 13:2141–2147

    Article  PubMed  CAS  Google Scholar 

  • Chari DM (2007) Remyelination in multiple sclerosis. Int Rev Neurobiol 79:589–620

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Meininger V, Guillemin GJ (2009) Recent advances in the treatment of amyotrophic lateral sclerosis. Emphasis on kynurenine pathway inhibitors. Cent Nerv Syst Agents Med Chem 9:32–39

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Stankovich R, Cullen KM, Meininger V, Garner B, Coggan S et al (2010) The kynurenine pathway and inflammation in amyotrophic lateral sclerosis. Neurotox Res 18:132–142

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Brew B, Guillemin GJ (2011) Characterization of the kynurenine pathway in NSC-34 cell line: implications for amyotrophic lateral sclerosis. J Neurochem 118:816–825

    Article  PubMed  CAS  Google Scholar 

  • Chiarugi A, Cozzi A, Ballerini C, Massacesi L, Moroni F (2001) Kynurenine 3-mono-oxygenase activity and neurotoxic kynurenine metabolites increase in the spinal cord of rats with experimental allergic encephalomyelitis. Neuroscience 102:687–695

    Article  PubMed  CAS  Google Scholar 

  • Chun J, Hartung HP (2010) Mechanism of action of oral fingolimod (FTY720) in multiple sclerosis. Clin Neuropharmacol 33:91–101

    Article  PubMed  CAS  Google Scholar 

  • Comi G, Abramsky O, Arbizu T, Boyko A, Gold R, Havrdová E et al, LAQ/5063 Study Group (2010) Oral laquinimod in patients with relapsing-remitting multiple sclerosis: 36-week double-blind active extension of the multi-centre, randomized, double-blind, parallel-group placebo-controlled study. Mult Scler 16:1360–1366

    Google Scholar 

  • Comi G, Pulizzi A, Rovaris M, Abramsky O, Arbizu T, Boiko A, LAQ/5062 Study Group (2008) Effect of laquinimod on MRI-monitored disease activity in patients with relapsing-remitting multiple sclerosis: a multicentre, randomised, double-blind, placebo-controlled phase IIb study. Lancet 371:2085–2092

    Google Scholar 

  • Croitoru-Lamoury J, Lamoury FMJ, Caristo M, Suzuki K, Walker D et al (2011) Interferon-γ regulates the proliferation and differentiation of mesenchymal stem cells via activation of indoleamine 2,3 dioxygenase (IDO). PLoS ONE 6:e14698. doi:10.1371/journal.pone.0014698

    Article  PubMed  CAS  Google Scholar 

  • Espey MG, Chernyshev ON, Reinhard JF Jr, Namboodiri MA, Colton CA (1997) Activated human microglia produce the excitotoxin quinolinic acid. Neuroreport 8:431–434

    Article  PubMed  CAS  Google Scholar 

  • Fallarino F, Grohmann U, Vacca C, Bianchi R, Orabona C, Spreca A et al (2002) T cell apoptosis by tryptophan catabolism. Cell Death Differ 9:1069–1077

    Article  PubMed  CAS  Google Scholar 

  • Fernandez O (2011) Oral laquinimod treatment is multiple sclerosis. Neurologia 26:111–117

    Article  PubMed  Google Scholar 

  • Flanagan EM, Erickson JB, Viveros OH, Chang SY, Reinhard JF Jr (1995) Neurotoxin quinolinic acid is selectively elevated in spinal cords of rats with experimental allergic encephalomyelitis. J Neurochem 64:1192–1196

    Article  PubMed  CAS  Google Scholar 

  • Frumento G, Rotondo R, Tonetti M, Damonte G, Benatti U, Ferrara GB (2002) Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase. J Exp Med 196:459–468

    Article  PubMed  CAS  Google Scholar 

  • Füvesi J, Somlai C, Németh H, Varga H, Kis Z, Farkas T et al (2004) Comparative study on the effects of kynurenic acid and glucosamine-kynurenic acid. Pharmacol Biochem Behav 77:95–102

    Article  PubMed  Google Scholar 

  • Gold R, Kappos L, Bar-Or A, Arnold D, Giovannoni G, Selmaj K et al (2011) Clinical efficacy of BG-12, an oral therapy, in relapsing-remitting multiple sclerosis: data from the phase 3 DEFINE trial. Mult Scler Suppl 10:34

    Google Scholar 

  • Graves MC, Fiala M, Dinglasan LA, Liu NQ, Sayre J et al (2004) Inflammation in amyotrophic lateral sclerosis spinal cord and brain is mediated by activated macrophages, mast cells and T cells. Amyotroph Lateral Scler Other Motor Neuron Disord 5:213–219

    Article  PubMed  CAS  Google Scholar 

  • Guidetti P, Amori L, Sapko MT, Okuno E, Schwarcz R (2007) Mitochondrial aspartate aminotransferase: a third kynurenate-producing enzyme in the mammalian brain. J Neurochem 102:103–111

    Article  PubMed  CAS  Google Scholar 

  • Guillemin GJ, Kerr SJ, Pemberton LA, Smith DG, Smythe GA, Armati PJ, Brew BJ (2001a) IFN-beta1b induces kynurenine pathway metabolism in human macrophages: potential implications for multiple sclerosis treatment. J Interferon Cytokine Res 21:1097–1101

    Article  PubMed  CAS  Google Scholar 

  • Guillemin GJ, Kerr SJ, Smythe GA et al (2001b) Kynurenine pathway metabolism in human astrocytes. J Neurochem 78:842–853

    Article  PubMed  CAS  Google Scholar 

  • Guillemin GJ, Meininger V, Brew BJ (2005a) Implications for the kynurenine pathway and quinolinic acid in amyotrophic lateral sclerosis. Neurodegener Dis 2:166–176

    Article  PubMed  CAS  Google Scholar 

  • Guillemin GJ, Wang L, Brew BJ (2005b) Quinolinic acid selectively induces apoptosis of human astrocytes: potential role in AIDS dementia complex. J Neuroinflammation 2:16

    Article  PubMed  Google Scholar 

  • Han Q, Cai T, Tagle DA, Li J (2010) Structure, expression, and function of kynurenine aminotransferases in human and rodent brains. Cell Mol Life Sci 67:353–368

    Article  PubMed  CAS  Google Scholar 

  • Hartai Z, Klivenyi P, Janaky T, Penke B, Dux L, Vecsei L (2005) Kynurenine metabolism in multiple sclerosis. Acta Neur Scand 112:93–96

    Article  CAS  Google Scholar 

  • Henkel JS, Engelhardt JI, Siklos L, Simpson EP, Kim SH, Pan T et al (2004) Presence of dendritic cells, MCP-1, and activated microglia/macrophages in amyotrophic lateral sclerosis spinal cord tissue. Ann Neurol 55:221–235

    Article  PubMed  CAS  Google Scholar 

  • Heyes MP, Saito K, Crowley JS, Davis LE, Memitrack MA, Der M et al (1992a) Quinolinic acid and kynurenine pathway metabolism in inflammatory and noninflammatory neurological disease. Brain 115:1249–1273

    Article  PubMed  Google Scholar 

  • Heyes MP, Saito K, Markey SP (1992b) Human macrophages convert l-tryptophan into the neurotoxin quinolinic acid. Biochem J 283:633–635

    PubMed  CAS  Google Scholar 

  • Hokari M, Wu HQ, Schwarcz R, Smith QR (1996) Facilitated brain uptake of 4-chlorokynurenine and conversion to 7-chlorokynurenic acid. Neuroreport 8:15–18

    Article  PubMed  CAS  Google Scholar 

  • Ilzecka J, Kocki T, Stelmasiak Z, Turski WA (2003) Endogenous protectant kynurenic acid in amyotrophic lateral sclerosis. Acta Neurol Scand 107:412–418

    Article  PubMed  CAS  Google Scholar 

  • Jacobs LD, Cookfair DL, Rudick RA, Herndon RM, Richert JR, Salazar AM et al (1996) Intramuscular interferon beta-1a for disease progression in relapsing multiple sclerosis. The Multiple Sclerosis Collaborative Research Group (MSCRG). Ann Neurol 39:285–294

    Article  PubMed  CAS  Google Scholar 

  • Jhamandas KH, Boegman RJ, Beninger RJ, Miranda AF, Lipic KA (2000) Excitotoxicity of quinolinic acid: modulation by endogenous antagonists. Neurotoxic Res 2:139–155

    Article  CAS  Google Scholar 

  • Johnson JW, Ascher P (1987) Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 325:529–531

    Article  PubMed  CAS  Google Scholar 

  • Johnson KP, Brooks BR, Cohen JA, Ford CC, Goldstein J, Lisak RP et al (1995) Copolymer 1 reduces relapse rate and improves disability in relapsing-remitting multiple sclerosis: results of a phase III multicenter, double-blind placebo-controlled trial. The Copolymer 1 Multiple Sclerosis Study Group. Neurology 45:1268–1276

    PubMed  CAS  Google Scholar 

  • Kanki R, Nakamizo T, Yamashita H, Kihara T, Sawada H, Uemura K et al (2004) Effects of mitochondrial dysfunction on glutamate receptor-mediated neurotoxicity in cultured rat spinal motor neurons. Brain Res 1015:73–81

    Article  PubMed  CAS  Google Scholar 

  • Kappos L, Radue EW, O’Connor P, Polman C, Hohlfeld R, Calabresi P, FREEDOMS Study Group et al (2010) A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N Engl J Med 362:387–401

    Article  PubMed  CAS  Google Scholar 

  • Kelly WJ, Burke RE (1996) Apoptotic neuron death in rat substantia nigra induced by striatal excitotoxic injury is developmentally dependent. Neurosci Lett 220:85–88

    Article  PubMed  CAS  Google Scholar 

  • Kerr SJ, Armati PJ, Brew BJ (1995) Neurocytotoxicity of quinolinic acid in human brain cultures. J Neurovirol 1:375–380

    Article  PubMed  CAS  Google Scholar 

  • Kiss C, Vécsei L (2009) Kynurenines in the brain: preclinical and clinical studies, therapeutic considerations. In: Lajtha A (ed) Handbook of neurochemistry and molecular neurobiology, 3rd edn. Springer, Heidelberg, pp 91–105

    Chapter  Google Scholar 

  • Kiss C, Ceresoli-Borroni G, Guidetti P, Zielke CL, Zielke HR, Schwarcz R (2003) Kynurenate production by cultured human astrocytes. J Neural Transm 110:1–14

    PubMed  CAS  Google Scholar 

  • Kwidzinski E, Bechmann I (2007) IDO expression in the brain: a double-edged sword. J Mol Med 85:1351–1359

    Article  PubMed  Google Scholar 

  • Kwidzinski E, Bunse J, Aktas O, Richter D, Mutlu L, Zipp F et al (2005) Indolamine 2,3-dioxygenase is expressed in the CNS and down-regulates autoimmune inflammation. FASEB J 19:1347–1349

    PubMed  CAS  Google Scholar 

  • Lee GK, Park HJ, Macleod M, Chandler P, Munn DH, Mellor AL (2002) Tryptophan deprivation sensitizes activated T cells to apoptosis prior to cell division. Immunology 107:452–460

    Article  PubMed  CAS  Google Scholar 

  • Lehrmann E, Molinari A, Speciale C, Schwarcz R (2001) Immunohistochemical visualization of newly formed quinolate in the normal and excitotoxically lesioned rat striatum. Exp Brain Res 141:389–397

    Article  PubMed  CAS  Google Scholar 

  • Linker RA, Lee DH, Ryan S, van Dam AM, Conrad R, Bista P et al (2011) Fumaric acid esters exert neuroprotective effects in neuroinflammation via activation of the Nrf2 antioxidant pathway. Brain 134:678–692

    Article  PubMed  Google Scholar 

  • Lovas G, Szilagyi N, Majtenyi K, Palkovits M, Komoly S (2000) Axonal changes in chronic demyelinated cervical spinal cord plaques. Brain 123:308–317

    Article  PubMed  Google Scholar 

  • Lublin FD, Reingold SC (1996) Defining the clinical course of multiple sclerosis: results of an international survey. National Multiple Sclerosis Society (USA) Advisory Committee on Clinical Trials of New Agents in Multiple Sclerosis. Neurology 46:907–911

    PubMed  CAS  Google Scholar 

  • Lublin FD, Whitaker JN, Eidelman BH, Miller AE, Arnason BG, Burks JS (1996) Management of patients receiving interferon beta-1b for multiple sclerosis: report of a consensus conference. Neurology 46:12–18

    PubMed  CAS  Google Scholar 

  • Macaya A, Munell F, Gubits RM, Burke RE (1994) Apoptosis in substantia nigra following developmental striatal excitotoxic injury. Proc Natl Acad Sci USA 91:8117–8121

    Article  PubMed  CAS  Google Scholar 

  • Malpass K (2011) The kynurenine pathway—promising new targets and therapies for neurodegenerative disease. Nat Rev Neurol 7:417

    Article  PubMed  Google Scholar 

  • Mándi Y, Vécsei L (2011) The kynurenine system and immunoregulation. J Neural Transm. doi:10.1007/s00702-011-0681-y (online first™)

  • Marosi M, Nagy D, Farkas T, Kis Z, Rózsa E, Robotka H et al (2010) A novel kynurenic acid analogue: a comparison with kynurenic acid. An in vitro electrophysiological study. J Neural Transm 117:183–188

    Article  PubMed  CAS  Google Scholar 

  • Matysiak M, Stasiołek M, Orłowski W, Jurewicz A, Janczar S, Raine CS, Selmaj K (2008) Stem cells ameliorate EAE via an indoleamine 2,3-dioxygenase (IDO) mechanism. J Neuroimmunol 193:12–23

    Article  PubMed  CAS  Google Scholar 

  • McGeer PL, McGeer EG (2002) Inflammatory processes in amyotrophic lateral sclerosis. Muscle Nerve 26:459–470

    Article  PubMed  CAS  Google Scholar 

  • Miller DH, Khan OA, Sheremata WA, Blumhardt LD, Rice GP, Libonati MA, International Natalizumab Multiple Sclerosis Trial Group et al (2003) A controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med 348:15–23

    Article  PubMed  CAS  Google Scholar 

  • Monaco F, Fumero S, Mondino A, Mutani R (1979) Plasma and cerebrospinal fluid tryptophan in multiple sclerosis and degenerative diseases. J Neurol Neurosurg Psychiatry 42:640–641

    Article  PubMed  CAS  Google Scholar 

  • Munn DH, Zhou M, Attwood JT et al (1998) Prevention of allogenic fetal rejection by tryptophan catabolism. Science 281:1122–1124

    Article  Google Scholar 

  • Okuno E, Nakamura M, Schwarcz R (1991) Two kynurenine aminotransferases in human brain. Brain Res 542:307–312

    Article  PubMed  CAS  Google Scholar 

  • Paterson PY (1980) Experimental allergic encephalomyelitis and autoimmune disease. Prog Clin Biol Res 49:19–36

    PubMed  CAS  Google Scholar 

  • Paty DW, Li DK (1993) Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. II. MRI analysis results of a multicenter, randomized, double-blind, placebo-controlled trial. UBC MS/MRI Study Group and the IFNB Multiple Sclerosis Study Group. Neurology 43:662–667

    PubMed  CAS  Google Scholar 

  • Platten M, Ho PP, Youssef S, Fontoura P, Garren H, Hur EM et al (2005) Treatment of autoimmune neuroinflammation with a synthetic tryptophan metabolite. Science 310:850–855

    Article  PubMed  CAS  Google Scholar 

  • Polman C, Barkhof F, Sandberg-Wollheim M, Linde A, Nordle O, Nederman T, Laquinimod in Relapsing MS Study Group (2005) Treatment with laquinimod reduces development of active MRI lesions in relapsing MS. Neurology 64:987–991

    Google Scholar 

  • Polman CH, O’Connor PW, Havrdova E, Hutchinson M, Kappos L, Miller DH et al, AFFIRM Investigators (2006) A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med 354:899–910

    Google Scholar 

  • Prescott C, Weeks AM, Staley KJ, Partin KM (2006) Kynurenic acid has a dual action on AMPA receptor responses. Neurosci Lett 402:109–112

    Article  Google Scholar 

  • PRISMS Study Group (1998) Randomised double-blind placebo-controlled study of interferon beta-1a in relapsing/remitting multiple sclerosis. PRISMS (Prevention of Relapses and Disability by Interferon beta-1a Subcutaneously in Multiple Sclerosis) Study Group. Lancet 352:1498–1504

    Article  Google Scholar 

  • Rajda C, Bergquist J, Vecsei L (2007) Kynurenines, redox disturbances and neurodegeneration in multiple sclerosis. J Neural Transm Suppl 72:323–329

    Article  PubMed  CAS  Google Scholar 

  • Reder AT, Ebers G, Cutter G, Kremenchutzky M, Goodin D, Oger J et al (2010a) Survival analysis 21 years after the initiation of the pivotal interferon beta-1b trial in patients with RRMS. Mult Scler 16:S318

    Google Scholar 

  • Reder AT, Ebers GC, Traboulsee A, Li D, Langdon D, Goodin DS et al (2010b) Cross-sectional study assessing long-term safety of interferon-beta-1b for relapsing-remitting MS. Neurology 74:1877–1885

    Article  PubMed  CAS  Google Scholar 

  • Rejdak K, Bartosik-Psujek H, Dobosz B, Kocki T, Grieb P, Giovannoni G et al (2002) Decreased level of kynurenic acid in cerebrospinal fluid of relapsing-onset multiple sclerosis patients. Neurosci Lett 331:63–65

    Article  PubMed  CAS  Google Scholar 

  • Rejdak K, Petzold A, Kocki T, Kurzepa J, Grieb P, Turski WA, Stelmasiak Z (2007) Astrocytic activation in relation to inflammatory markers during clinical exacerbation of relapsing-remitting multiple sclerosis. J Neural Transm 114:1011–1015

    Article  PubMed  CAS  Google Scholar 

  • Rios C, Santamaria A (1991) Quinolinic acid is a potent lipid peroxidant in rat brain homogenates. Neurochem Res 16:1139–1143

    Article  PubMed  CAS  Google Scholar 

  • Robotka H, Németh H, Somlai C, Vécsei L, Toldi J (2005) Systemically administered glucosamine-kynurenic acid, but not pure kynurenic acid, is effective in decreasing the evoked activity in area CA1 of the rat hippocampus. Eur J Pharmacol 513:75–80

    Article  PubMed  CAS  Google Scholar 

  • Ropper AH, Samuels MA (2009) Adams and Victor’s principles of neurology, 9th edn. McGraw Hill, New York, pp 1011–1080

    Google Scholar 

  • Rozsa E, Robotka H, Vecsei L, Toldi J (2008) The Janus-face kynurenic acid. J Neural Transm 115:1087–1091

    Article  PubMed  CAS  Google Scholar 

  • Rudick RA, Fisher E, Lee JC, Simon J, Jacobs L (1999) Use of the brain parenchymal fraction to measure whole brain atrophy in relapsing-remitting MS. Multiple Sclerosis Collaborative Research Group. Neurology 53:1698–1704

    PubMed  CAS  Google Scholar 

  • Sargsyan SA, Monk PN, Shaw PJ (2005) Microglia as potential contributors to motor neuron injury in amyotrophic lateral sclerosis. Glia 51:241–253

    Article  PubMed  Google Scholar 

  • Sas K, Robotka H, Toldi J, Vécsei L (2007) Mitochondria, metabolic disturbances, oxidative stress and the kynurenine system, with focus on neurodegenerative disorders. J Neurol Sci 257:221–239

    Article  PubMed  CAS  Google Scholar 

  • Simon JH, Jacobs LD, Campion M, Wende K, Simonian N, Cookfair DL et al (1998) Magnetic resonance studies of intramuscular interferon beta-1a for relapsing multiple sclerosis. The Multiple Sclerosis Collaborative Research Group. Ann Neurol 43:79–87

    Article  PubMed  CAS  Google Scholar 

  • Spreux-Varoquaux O, Bensimon G, Lacomblez L, Salachas F, Pradat PF, LeForestier N et al (2002) Glutamate levels in cerebrospinal fluid in amyotrophic lateral sclerosis: a reappraisal using a new HPLC method with coulometric detection in a large cohort of patients. J Neurol Sci 193:73–78

    Article  PubMed  CAS  Google Scholar 

  • Stone TW (1993) Neuropharmacology of quinolinic and kynurenic acids. Pharmacol Rev 45:310–379

    Google Scholar 

  • Stone TW (2000) Development and therapeutic potential of kynurenic acid and kynurenine derivatives for neuroprotection. Tips 21:149–154

    PubMed  CAS  Google Scholar 

  • Stone TW (2001a) Endogenous neurotoxins from tryptophan. Toxicon 39:61–73

    Article  PubMed  CAS  Google Scholar 

  • Stone TW (2001b) Kynurenic acid antagonists and kynurenine pathway inhibitors. Exp Opin Investig Drugs 10:633–645

    Article  CAS  Google Scholar 

  • Tavares RG, Tasca CI, Santos CE, Wajner M, Souza DO, Dutra-Filho CS (2000) Quinolinic acid inhibits glutamate uptake into synaptic vesicles from rat brain. Neuroreport 11:249–253

    Article  PubMed  CAS  Google Scholar 

  • The IFNB Multiple Sclerosis Study Group (1993) Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. I. Clinical results of a multicenter, randomized, double-blind, placebo-controlled trial. Neurology 43:655–661

    Google Scholar 

  • Thomas SR, Witting PK, Stocker R (1996) 3-Hydroxyanthranilic acid is an efficient, cell derived co-antioxidant for α-tocopherol, inhibiting human low density lipoprotein and plasma lipid peroxidation. J Biol Chem 271:32714–32721

    Article  PubMed  CAS  Google Scholar 

  • Vamos E, Pardutz A, Klivenyi P, Toldi J, Vecsei L (2009) The role of kynurenines in disorders of the central nervous system: possibilities for neuroprotection. J Neurol Sci 283:21–27

    Article  PubMed  CAS  Google Scholar 

  • Vécsei L, Miller J, MacGarvey U, Beal MF (1992) Kynurenine and probenecid inhibit pentylenetetrazol- and NMDLA-induced seizures and increase kynurenic acid concentrations in the brain. Brain Res Bull 28:233–238

    Article  PubMed  Google Scholar 

  • Vincent AM, Backus C, Taubman AA, Feldman EL (2005) Identification of candidate drugs for the treatment of ALS. Amyotroph Lateral Scler 6:29–36

    Article  CAS  Google Scholar 

  • Whetsell WO, Schwarcz R (1989) Prolonged exposure to submicromolar concentrations of quinolinic acid causes excitotoxic damage in organotypic cultures of rat corticostriatal system. Neurosci Lett 97:271–275

    Article  PubMed  CAS  Google Scholar 

  • Yu P, Li Z, Zhang L, Tagle DA, Cai T (2006) Characterization of kynurenine aminotransferase III, a novel member of a phylogenetically conserved KAT family. Gene 365:111–118

    Article  PubMed  CAS  Google Scholar 

  • Zádori D, Nyiri G, Szonyi A, Szatmári I, Fülöp F, Toldi J et al (2011a) Neuroprotective effects of a novel kynurenic acid analogue in a transgenic mouse model of Huntington’s disease. J Neural Transm 118:865–875

    Article  PubMed  Google Scholar 

  • Zádori D, Klivényi P, Plangár I, Toldi J, Vécsei L (2011b) Endogenous neuroprotection in chronic neurodegenerative disorders: with particular regard to the kynurenines. J Cell Mol Med 15:701–717

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Funding of the studies reported in the paper: TÁMOP KONV-2010-0005 and ETT 026-04, Neuroscience Research Group of the Hungarian Academy of Sciences and University of Szeged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Vécsei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Füvesi, J., Rajda, C., Bencsik, K. et al. The role of kynurenines in the pathomechanism of amyotrophic lateral sclerosis and multiple sclerosis: therapeutic implications. J Neural Transm 119, 225–234 (2012). https://doi.org/10.1007/s00702-012-0765-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-012-0765-3

Keywords

Navigation