Skip to main content

Neuroprotection by Kynurenine Metabolites

  • Reference work entry
  • First Online:
Handbook of Neurotoxicity

Abstract

The overexcitation of excitatory amino acid receptors generates excitotoxicity, which plays an important role in the pathophysiology of various neurodegenerative disorders such as Parkinson’s and Alzheimer’s diseases, stroke, and epilepsy. The prevention of excitotoxic neuronal damage is therefore a major objective in neuroprotective strategies. The kynurenine pathway, the main route of the tryptophan metabolism, produces both neuroprotective and neurotoxic metabolites. Kynurenic acid is a broad-spectrum endogenous antagonist of ionotropic excitatory amino acid receptors, and hence it can prevent excitotoxic neuronal damage. The kynurenine metabolites are additionally involved in the regulation of glutamatergic and cholinergic neurotransmission. The pathogeneses of several neurodegenerative disorders have been shown to involve multiple imbalances in the kynurenine metabolism. Kynurenine pathway metabolites may provide important targets for future neuroprotective therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3-HANA:

3-hydroxyanthranilic acid

AMPA:

alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

ANA:

anthranilic acid

3-HK:

3-hydroxykynurenine

EAA:

excitatory amino acid

IDO:

indoleamine 2,3-dioxygenase

KAT:

kynurenine aminotransferase

KMO:

kynurenine 3-monooxygenase

KYNA:

kynurenic acid

L-KYN:

L-kynurenine

NAD:

nicotinamide adenine dinucleotide

NMDA:

N-methyl-D-aspartate

QUIN:

quinolinic acid

TDO:

tryptophan 2,3-dioxygenase

References

  • Arundine, M., & Tymianski, M. (2003). Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity. Cell Calcium, 34, 325–337.

    Article  CAS  PubMed  Google Scholar 

  • Arundine, M., & Tymianski, M. (2004). Molecular mechanisms of glutamate-dependent neurodegeneration in ischemia and traumatic brain injury. Cellular and Molecular Life Sciences, 61, 657–658.

    Article  CAS  PubMed  Google Scholar 

  • Baran, H., Jellinger, K., & Deecke, L. (1999). Kynurenine metabolism in Alzheimer’s disease. Journal of Neural Transmission, 106, 165–181.

    Article  CAS  PubMed  Google Scholar 

  • Beadle, G. W., Mitchell, H. K., & Nyc, J. F. (1947). Kynurenine as an intermediate in the formation of nicotinic acid from tryptophane by neurospora. Proceedings of the National Academy of Sciences United States of America, 33, 155–158.

    Article  CAS  Google Scholar 

  • Beal, M. F., Kowall, N. W., Ellison, D. W., Mazurek, M. F., Swartz, K. J., & Martin, J. B. (1986). Replication of the neurochemical characteristics of Huntington’s disease by quinolinic acid. Nature, 321, 168–171.

    Article  CAS  PubMed  Google Scholar 

  • Beal, M. F., Matson, W. R., Swartz, K. J., Gamache, P. H., & Bird, E. D. (1990). Kynurenine pathway measurements in Huntington’s disease striatum: Evidence for reduced formation of kynurenic acid. Journal of Neurochemistry, 55(4), 1327–1339.

    Article  CAS  PubMed  Google Scholar 

  • Beal, M. F., Matson, W. R., Storey, E., Milbury, P., Ryan, E. A., Ogawa, T., & Bird, E. D. (1992). Kynurenic acid concentrations are reduced in Huntington’s disease cerebral cortex. Journal of the Neurological Sciences, 108(1), 80–87.

    Article  CAS  PubMed  Google Scholar 

  • Behan, W. M., McDonald, M., Darlington, L. G., & Stone, T. W. (1999). Oxidative stress as a mechanism for quinolinic acid-induced hippocampal damage: Protection by melatonin and deprenyl. British Journal of Pharmacology, 128(8), 1754–1760.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Berdichevsky, E., Riveros, N., Sanches-Armass, S., & Orrego, F. (1983). Kainate, N-methylaspartate and other excitatory amino acids increase calcium influx into rat brain cortex cells in vitro. Neuroscience Letter, 36, 75–80.

    Article  CAS  Google Scholar 

  • Birch, P. J., Grossman, C. J., & Hayes, A. G. (1988). Kynurenic acid antagonises responses to NMDA via an action at the strychnine-insensitive glycine receptor. European Journal of Pharmacology, 154, 85–87.

    Article  CAS  PubMed  Google Scholar 

  • Carpenedo, R., Chiarugi, A., Russi, P., et al. (1994). Inhibitors of kynurenine hydroxylase and kynureninase increase cerebral formation of kynurenate and have sedative and anticonvulsant activities. Neuroscience, 61, 237–243.

    Article  CAS  PubMed  Google Scholar 

  • Carpenedo, R., Pittaluga, A., Cozzi, A., Attucci, S., Galli, A., Raiteri, M., & Moroni, F. (2001). Presynaptic kynurenate-sensitive receptors inhibit glutamate release. European Journal of Neuroscience, 13(11), 2141–2147.

    Article  CAS  PubMed  Google Scholar 

  • Carvalho, A. L., Duarte, C. B., & Carvalho, A. P. (2000). Regulation of AMPA receptors by phosphorylation. Neurochemical Research, 25, 1245–1255.

    Article  CAS  PubMed  Google Scholar 

  • Chess, A. C., & Bucci, D. J. (2006). Increased concentration of cerebral kynurenic acid alters stimulus processing and conditioned responding. Behavioural Brain Research, 170, 326–332.

    Article  CAS  PubMed  Google Scholar 

  • Choi, D. W., Maulucci-Gedde, M., & Kriegstein, A. R. (1987). Glutamate neurotoxicity in cortical cell culture. The Journal of Neuroscience, 7, 357–368.

    CAS  PubMed  Google Scholar 

  • Ciabarra, A. M., Sullivan, J. M., Gahn, L. G., Pecht, G., Heinemann, S., & Sevarino, K. A. (1995). Cloning and characterization of chi-1: A developmentally regulated member of a novel class of the ionotropic glutamate receptor family. The Journal of Neuroscience, 15, 6498–6508.

    CAS  PubMed  Google Scholar 

  • Connick, J. H., & Stone, T. W. (1988). Quinolinic acid effects on amino acid release from the rat cerebral cortex in vitro and in vivo. British Journal of Pharmacology, 93(4), 868–876.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cozzi, A., Carpenedo, R., & Moroni, F. (1999). Kynurenine hydroxylase inhibitors reduce ischemic brain damage: Studies with (m-nitrobenzoyl)-alanine (mNBA) and 3, 4-dimethoxy-[-N-4-(nitrophenyl) thiazol-2yl]- benzenesulfonamide (Ro 61–8048) in models of focal or global brain ischemia. Journal of Cerebral Blood Flow & Metabolism, 19, 771–777.

    Article  CAS  Google Scholar 

  • Croucher, M. J., Collins, J. F., & Meldrum, B. S. (1982). Anticonvulsant action of excitatory amino acid antagonists. Science, 216, 899–901.

    Article  CAS  PubMed  Google Scholar 

  • de Carvalho, L.P., Bochet, P., & Rossier, J. (1996). The endogenous agonist quinolinic acid and the non endogenous homoquinolinic acid discriminate between NMDAR2 receptor subunits. Neurochemistry International, 28(4), 445–52.

    Article  PubMed  Google Scholar 

  • Du, F., Schmidt, W., Okuno, E., Kido, R., Köhler, C., & Schwarz, R. (1992). Localization of kynurenine aminotransferase immunoreactivity in the rat hippocampus. The Journal of Comparative Neurology, 321, 477–487.

    Article  CAS  PubMed  Google Scholar 

  • Erhardt, S., Schwieler, L., Emanuelsson, C., & Geyer, M. (2004). Endogenous kynurenic acid disrupts prepulse inhibition. Biological Psychiatry, 56, 255–260.

    Article  CAS  PubMed  Google Scholar 

  • Fukui, S., Schwarz, R., Rapoport, S. I., Takada, Y., & Smith, Q. R. (1991). Blood-brain barrier transport of kynurenines: Implications for brain synthesis and metabolism. Journal of Neurochemistry, 56, 2007–2017.

    Article  CAS  PubMed  Google Scholar 

  • Gigler, G., Szénási, G., Simó, A., Lévay, G., Hársing, L. G., Jr., Sas, K., Vécsei, L., & Toldi, J. (2007). Neuroprotective effect of L-kynurenine sulfate administered before focal cerebral ischemia in mice and global cerebral ischemia in gerbils. European Journal of Pharmacology, 564, 116–122.

    Article  CAS  PubMed  Google Scholar 

  • Guidetti, P., Okuno, E., & Schwarz, R. (1997). Characterization of rat brain kynurenine aminotransferases. Journal of Neuroscience Research, 50, 457–465.

    Article  CAS  PubMed  Google Scholar 

  • Guidetti, P., Luthi-Carter, R. E., Augood, S. J., & Schwarcz, R. (2004). Neostriatal and cortical quinolinate levels are increased in early grade Huntington’s disease. Neurobiology of Disease, 17(3), 455–461.

    Article  CAS  PubMed  Google Scholar 

  • Guidetti, P., Bates, G. P., Graham, R. K., Hayden, M. R., Leavitt, B. R., MacDonald, M. E., et al. (2006). Elevated brain 3-hydroxykynurenine and quinolinate levels in Huntington’s disease mice. Neurobiology of Disease, 23, 190–197.

    Article  CAS  PubMed  Google Scholar 

  • Guidetti, P., Amori, L., Sapko, M. T., Okuno, E., & Schwarcz, R. (2007). Mitochondrial aspartate aminotransferase: A third kynurenate-producing enzyme in the mammalian brain. Journal of Neurochemistry, 102(1), 103–111.

    Article  CAS  PubMed  Google Scholar 

  • Guillemin, G. J., Kerr, S. J., Smythe, G. A., et al. (2001). Kynurenine pathway metabolism in human astrocytes: A paradox for neuronal protection. Journal of Neurochemistry, 78, 842–853.

    Article  CAS  PubMed  Google Scholar 

  • Han, Q., Li, J., & Li, J. (2004). pH dependence, substrate specificity and inhibition of human kynurenine aminotransferase I. European Journal of Biochemistry, 271, 4804–4814.

    Article  CAS  PubMed  Google Scholar 

  • Han, Q., Cai, T., Tagle, D. A., & Li, J. (2010). Structure, expression, and function of kynurenine aminotransferases in human and rodent brains. Cellular and Molecular Life Sciences, 67(3), 353–368.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hartai, Z., Klivenyi, P., Janaky, T., Penke, B., Dux, L., & Vecsei, L. (2005). Kynurenine metabolism in plasma and in red blood cells in Parkinson’s disease. Journal of the Neurological Sciences, 239, 31–35.

    Article  CAS  PubMed  Google Scholar 

  • Hilmas, C., Pereira, E. F. R., Alkondon, M., Rassoulpour, A., Sczwarz, R., & Albuquerque, E. X. (2001). The brain metabolite kynurenic acid inhibits α7-nicotinic receptor activity and increases non-α7-nicotinic receptor expression: Physiological implications. Journal of Neuroscience, 21, 7463–7473.

    CAS  PubMed  Google Scholar 

  • Hollmann, M., & Heinemann, S. (1994). Cloned glutamate receptors. Annual Review of Neuroscience, 17, 31–108.

    Article  CAS  PubMed  Google Scholar 

  • Hollmann, M., Maron, C., & Heinemann, S. (1994). N-glycosylation site tagging suggests a three transmembrane domain topology for the glutamate receptor GluR1. Neuron, 13, 1331–1343.

    Article  CAS  PubMed  Google Scholar 

  • Kapoor, R., Okuno, E., Kido, R., & Kapoor, V. (1997). Immunolocalization of kynurenine aminotransferase (KAT) in the rat medulla and spinal cord. Neuroreport, 8, 3619–3623.

    Article  CAS  PubMed  Google Scholar 

  • Kessler, M., Terramani, T., Lynch, G., & Boundary, M. (1989). A glycine site associated with N-methyl-D-aspartic acid receptors characterization and identification of a new class of antagonists. Journal of Neurochemistry, 52, 1319–1328.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J. P., & Choi, D. W. (1987). Quinolinate neurotoxicity in cortical cell culture. Neuroscience, 23, 423–432.

    Article  CAS  PubMed  Google Scholar 

  • Kiss, C., Ceresoli-Borroni, C., Guidetti, P., Zielke, C. L., Zielke, H. R., & Schwarz, R. (2003). Kynurenate production by cultured human astrocytes. Journal of Neural Transmission, 110, 1–14.

    CAS  PubMed  Google Scholar 

  • Kita, T., Morrison, P. F., Heyes, M. P., & Markey, S. P. (2002). Effects of systemic and central nervous system localized inflammation on the contributions of metabolic precursors of the L-kynurenine and quinolinic acid pools in brain. Journal of Neurochemistry, 82, 258–268.

    Article  CAS  PubMed  Google Scholar 

  • Klivenyi, P., Toldi, J., & Vecsei, L. (2004). Kynurenines in neurodegenerative disorders: Therapeutic consideration. Advances in Experimental Medicine and Biology, 541, 169–183.

    Article  CAS  PubMed  Google Scholar 

  • Knyihar-Csillik, E., Okuno, E., & Vécsei, L. (1999). Effects of in vivo sodium azide administration on the immunohistochemical localization of kynurenine aminotransferase in the rat brain. Neuroscience, 94, 269–277.

    Article  CAS  PubMed  Google Scholar 

  • Krieglstein, J. (1997). Excitotoxicity and neuroprotection. European Journal of Pharmaceutical Sciences, 5, 181–187.

    Article  CAS  Google Scholar 

  • Lehrmann, E., Molinari, A., Speciale, C., & Schwarz, R. (2001). Immunohistochemical visualization of newly formed quinolinate in the normal and excitotoxically lesioned rat striatum. Experimental Brain Research, 141, 389–397.

    Article  CAS  PubMed  Google Scholar 

  • Lucas, D. R., & Newhouse, J. P. (1957). The toxic effect of sodium L-glutamate on the inner layers of the retina. A.M.A. Archives of ophthalmology, 58(2), 193–201.

    Article  CAS  PubMed  Google Scholar 

  • Madden, D. R. (2002). The structure and function of glutamate receptor ion channels. Nature Reviews Neuroscience, 3, 91–101.

    Article  CAS  PubMed  Google Scholar 

  • Morita, T., Saito, K., Takemura, M., Maekawa, N., Fujigaki, S., Fujii, H., et al. (1999). L-tryptophan kynurenine pathway metabolite 3-hydroxyanthranilic acid induces apoptosis in macrophage-derived cells under pathophysiological conditions. Advances in Experimental Medicine and Biology, 467, 559–563.

    Article  CAS  PubMed  Google Scholar 

  • Moriyoshi, K., Masu, M., Ishii, T., Shigemoto, R., Mizuno, N., & Nakanishi, S. (1991). Molecular cloning and characterization of the rat NMDA receptor. Nature, 354, 31–37.

    Article  CAS  PubMed  Google Scholar 

  • Moroni, F. (1999). Tryptophan metabolism and brain function: Focus on kynurenine and other indole metabolites. European Journal of Pharmacology, 375, 87–100.

    Article  CAS  PubMed  Google Scholar 

  • Moroni, F., Russi, G., Lombardi, G., Beni, M., & Carla, V. (1988). Presence of kynurenic acid in the mammalian brain. Journal of Neurochemistry, 51, 177–180.

    Article  CAS  PubMed  Google Scholar 

  • Nilsson, L. K., Linderholm, K. R., Engberg, G., Paulson, L., Blennow, K., Lindstro¨m, L. H., Nordin, C., Karanti, A., Persson, P., & Erhardt, S. (2005). Elevated levels of kynurenic acid in the cerebrospinal fluid of male patients with schizophrenia. Schizophrenia research, 80, 315–322.

    Article  CAS  PubMed  Google Scholar 

  • Novelli, A., Reilly, J. A., Lysko, P. G., & Henneberry, R. C. (1988). Glutamate becomes neurotoxic via the N-methyl-D-aspartate receptor when intracellular energy levels are reduced. Brain Research, 451(1–2), 205–212.

    Article  CAS  PubMed  Google Scholar 

  • Nozaki, K., & Beal, M. F. (1992). Neuroprotective effects of L-kynurenine on hypoxia-ischemia and NMDA lesions in neonatal rats. Journal of Cerebral Blood Flow and Metabolism, 12, 400–407.

    Article  CAS  PubMed  Google Scholar 

  • Ogawa, T., Matson, W. R., Beal, M. F., Myers, R. H., Bird, E. D., Milbury, P., & Saso, S. (1992). Kynurenine pathway abnormalities in Parkinson’s disease. Neurology, 42(9), 1702–1706.

    Article  CAS  PubMed  Google Scholar 

  • Ohshiro, H., Tonai-Kachi, H., & Ichikawa, K. (2008). GPR35 is a functional receptor in rat dorsal root ganglion neurons. Biochemical and Biophysical Research Communications, 365, 344–348.

    Article  CAS  PubMed  Google Scholar 

  • Okuda, S., Nishiyama, N., Saito, H., & Katsuki, H. (1998). 3-Hydroxykynurenine, an endogenous oxidative stress generator, causes neuronal cell death with apoptotic features and region selectivity. Journal of Neurochemistry, 70, 299–307.

    Article  CAS  PubMed  Google Scholar 

  • Okuno, E., Nakamura, M., & Schwarz, R. (1991). Two kynurenine aminotransferases in human brain. Brain Research, 542, 307–312.

    Article  CAS  PubMed  Google Scholar 

  • Olney, J. W. (1969). Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate. Science, 164(3880), 719–721.

    Article  CAS  PubMed  Google Scholar 

  • Olney, J. W., de Gubareff, T., & Labruyere, J. (1979). Alpha-aminoadipate blocks the neurotoxic action of N-methyl aspartate. Life Sciences, 25, 537–540.

    Article  CAS  PubMed  Google Scholar 

  • Olney, J. W., Price, M. T., Samson, L., & Labruyere, J. (1986). The role of specific ions in glutamate neurotoxicity. Neuroscience Letters, 65, 65–71.

    Article  CAS  PubMed  Google Scholar 

  • Ozawa, S., Kamiya, H., & Tsuzuki, K. (1998). Glutamate receptors in the mammalian central nervous system. Progress in Neurobiology, 54, 581–618.

    Article  CAS  PubMed  Google Scholar 

  • Pearson, S. J., & Reynolds, G. P. (1991). Determination of 3-hydroxykynurenine in human brain and plasma by high-performance liquid chromatography with electrochemical detection. Increased concentrations in hepatic encephalopathy. Journal of Chromatography, 565, 436–440.

    Article  CAS  PubMed  Google Scholar 

  • Pearson, S. J., & Reynolds, G. P. (1992). Increased brain concentrations of a neurotoxin, 3-hydroxykynurenine, in Huntington’s disease. Neuroscience Letters, 144, 199–201.

    Article  CAS  PubMed  Google Scholar 

  • Pellegrini-Giampietro, D. E., Gorter, J. A., Bennett, M. V. L., & Zukin, R. S. (1997). The GluR2 (GluR-B) hypothesis: Ca2+-permeable AMPA receptors in neurological disorders. Trends in Neurosciences, 20, 464–470.

    Article  CAS  PubMed  Google Scholar 

  • Pereira, E. F., Hilmas, C., Santos, M. D., Alkondon, M., Maelicke, A., & Albuquerque, E. X. (2002). Unconventional ligands and modulators of nicotinic receptors. Journal of Neurobiology, 53, 479–500.

    Article  CAS  PubMed  Google Scholar 

  • Perkins, M. N., & Stone, T. W. (1985). Actions of kynurenic acid and quinolinic acid in the rat hippocampus in vivo. Experimental Neurology, 88, 570–579.

    Article  CAS  PubMed  Google Scholar 

  • Prescott, C., Weeks, A. M., Staley, K. J., & Parton, K. M. (2006). Kynurenic acid has a dual action on AMPA receptor responses. Neuroscience Letters, 402, 108–112.

    Article  CAS  PubMed  Google Scholar 

  • Ravikumar, A., Deepadevi, K. V., Arun, P., Manojkumar, V., & Kurup, P. A. (2000). Tryptophan and tyrosine catabolic pattern in neuropsychiatric disorders. Neurology India, 48(3), 231–238.

    CAS  PubMed  Google Scholar 

  • Rios, C., & Santamaria, A. (1991). Quinolinic acid is a potent lipid peroxidant in rat brain homogenates. Neurochemical Research, 16(10), 1139–1143.

    Article  CAS  PubMed  Google Scholar 

  • Robotka, H., Sas, K., Ágoston, M., Rózsa, É., Szénási, G., Gigler, G., Vécsei, L., & Toldi, J. (2008a). Neuroprotection achieved in the ischaemic rat cortex with L-kynurenine sulphate. Life Sciences, 82, 915–919.

    Article  CAS  PubMed  Google Scholar 

  • Robotka, H., Toldi, J., & Vécsei, L. (2008b). L-kynurenine: Metabolism and mechanism of neuroprotection. Future Neurology, 3(2), 169–188.

    Article  CAS  Google Scholar 

  • Rodriguez-Martinez, E., Camacho, A., Maldonado, P. D., Pedraza-Chaverri, J., Santamaria, D., Galvan-Arzate, S., & Santamaria, A. (2000). Effect of quinolinic acid on endogenous antioxidants in rat corpus striatum. Brain Research, 858(2), 436–439.

    Article  CAS  PubMed  Google Scholar 

  • Rossi, F., Schwarcz, R., & Rizzi, M. (2008). Curiosity to kill the KAT (kynurenine aminotransferase): Structural insights into brain kynurenic acid synthesis. Current Opinion in Structural Biology, 18, 748–755.

    Article  CAS  PubMed  Google Scholar 

  • Rothman, S. M. (1985). The neurotoxicity of excitatory amino acids is produced by passive chloride influx. The Journal of Neuroscience, 5, 1483–1489.

    CAS  PubMed  Google Scholar 

  • Rozsa, E., Robotka, H., Vecsei, L., & Toldi, J. (2008). The Janus-face kynurenic acid. Journal of Neural Transmission, 115, 1087–1091.

    Article  CAS  PubMed  Google Scholar 

  • Sas, K., Robotka, H., Rózsa, É., Ágoston, M., Szénási, G., Gigler, G., Marosi, M., Kiss, Z., Farkas, T., Vécsei, L., & Toldi, J. (2008). Kynurenine diminishes the ischemia-induced histological and electrophysiological deficits in the rat hippocampus. Neurobiology of Disease, 32, 302–308.

    Article  CAS  PubMed  Google Scholar 

  • Schwarcz, R. (2004). The kynurenine pathway of tryptophan degradation as a drug target. Current Opinion in Pharmacology, 4, 12–17.

    Article  CAS  PubMed  Google Scholar 

  • Schwarcz, R., & Pellicciari, R. (2002). Manipulation of brain kynurenines: Glial targets, neuronal effects, and clinical opportunities. The Journal of Pharmacology and Experimental Therapeutics, 303, 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Schwarcz, R., Collins, J. F., & Parks, D. A. (1982). Alpha-amino-omega-phosphono carboxylates block ibotenate but not kainate neurotoxicity in rat hippocampus. Neuroscience Letters, 33, 85–90.

    Article  CAS  PubMed  Google Scholar 

  • Schwarcz, R., Whetsell, W. O., Jr., & Mangano, R. M. (1983). Quinolinic acid: An endogenous metabolite that produces axon-sparing lesions in rat brain. Science, 219, 316–318.

    Article  CAS  PubMed  Google Scholar 

  • Schwarcz, R., Foster, A. C., French, E. D., Whetsell, W. O., Jr., & Kohler, C. (1984). Excitotoxic models for neurodegenerative disorders. Life Science, 35, 19–32.

    Article  CAS  Google Scholar 

  • Schwarcz, R., Rassoulpour, A., Wu, H.-Q., Medoff, D., Tamminga, C. A., & Roberts, R. C. (2001). Increased cortical kynurenate content in schizophrenia. Biological Psychiatry, 50, 521–530.

    Article  CAS  PubMed  Google Scholar 

  • Shepard, P. D., Joy, B., Clerkin, L., & Schwarcz, R. (2003). Micromolar brain levels of kynurenic acid are associated with a disruption of auditory sensory gating in the rat. Neuropsychopharmacology, 28, 1454–1462.

    Article  CAS  PubMed  Google Scholar 

  • Simon, R. P., Swan, J. H., Griffiths, T., & Meldrum, B. S. (1984). Blockade of N-methyl-D-aspartate receptors may protect against ischemic damage in the brain. Science, 226, 850–852.

    Article  CAS  PubMed  Google Scholar 

  • Sommer, B., Keinanen, K., Verdoorn, T. A., Wisden, W., Burnashev, N., Herb, A., Kohler, M., Takagi, T., Sakmann, B., & Seeburg, P. H. (1990). Flip and flop: A cell-specific functional switch in glutamate-operated channels of the CNS. Science, 249, 1580–1585.

    Article  CAS  PubMed  Google Scholar 

  • Stone, T. W., & Connick, J. H. (1985). Quinolinic acid and other kynurenines in the central nervous system. Neuroscience, 15, 597–617.

    Article  PubMed  Google Scholar 

  • Stone, T. W., & Perkins, M. N. (1981). Quinolinic acid: A potent endogenous excitant at amino acid receptors in CNS. European Journal of Pharmacology, 72(4), 411–412.

    Article  CAS  PubMed  Google Scholar 

  • Stoy, N., Mackay, G. M., Forrest, C. M., Christofides, J., Egerton, M., Stone, T. W., et al. (2005). Tryptophan metabolism and oxidative stress in patients with Huntington’s disease. Journal of Neurochemistry, 3, 611–623.

    Article  Google Scholar 

  • Swartz, K. J., During, M. J., Freese, A., & Beal, M. F. (1990). Cerebral synthesis and release of kynurenic acid: An endogenous antagonist of excitatory amino acid receptors. The Journal of Neuroscience, 10, 2965–2973.

    CAS  PubMed  Google Scholar 

  • Szydlowska, K., & Tymianski, M. (2010). Calcium, ischemia and excitotoxicity. Cell Calcium, 47, 122–129.

    Article  CAS  PubMed  Google Scholar 

  • Tavares, R. G., Tasca, C. I., Santos, C. E., Alves, L. B., Porciuncula, L. O., Emanuelli, T., & Souza, D. O. (2002). Quinolinic acid stimulates synaptosomal glutamate release and inhibits glutamate uptake into astrocytes. Neurochemistry International, 40(7), 621–627.

    Article  CAS  PubMed  Google Scholar 

  • Turski, W. A., Nakamura, M., Todd, W. P., Carpenter, B. K., Whetsell, W. O., & Schwarz, R. (1988). Identification and quantification of kynurenic acid in human brain tissue. Brain Research, 454, 164–169.

    Article  CAS  PubMed  Google Scholar 

  • Vamos, E., Pardutz, A., Klivenyi, P., Toldi, J., & Vecsei, L. (2009). The role of kynurenines in disorders of the central nervous system: Possibilities for neuroprotection. Journal of the Neurological Sciences, 283, 21–27.

    Article  CAS  PubMed  Google Scholar 

  • Wang, J., Simonavicius, N., Wu, X., Swaminath, G., Reagan, J., Tian, H., & Ling, L. (2006). Kynurenic acid as a ligand for orphan G protein-coupled receptor GPR35. The Journal of Biological Chemistry, 281, 22021–22028.

    Article  CAS  PubMed  Google Scholar 

  • Yu, P., Li, Z., Zhang, L., Tagle, D. A., & Cai, T. (2006). Characterization of kynurenine aminotransferase III, a novel member of a phylogenetically conserved KAT family. Gene, 365, 111–118.

    Article  CAS  PubMed  Google Scholar 

  • Zadori, D., Klivenyi, P., Plangar, I., Toldi, J., & Vecsei, L. (2011). Endogenous neuroprotection in chronic neurodegenerative disorders: With particular regard to the kynurenines. Journal of Cellular and Molecular Medicine, 15(4), 701–717.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the project “TÁMOP-4.2.1/B-09/1/KONV-2010-0005–Creating the Center of Excellence at the University of Szeged,” by the Neuroscience Research Group of the Hungarian Academy of Sciences and University of Szeged, and by ETT 026–04.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Vécsei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Majláth, Z. et al. (2014). Neuroprotection by Kynurenine Metabolites. In: Kostrzewa, R. (eds) Handbook of Neurotoxicity. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5836-4_165

Download citation

Publish with us

Policies and ethics