Skip to main content
Log in

Preparation of boronic acid–modified polymer dots under mild conditions and their applications in pH and glucose detection

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

For the first time, boronic acid–modified polymer dots (B-PDs) were fabricated by a “synthesis-modification integration” route using polyethylenimine (PEI) and phenylboronic acid as precursors. Under optimized preparation conditions, the B-PDs exhibited an average size of 2.2 nm, good water solubility, and high fluorescence quantum yield of 8.69%. The B-PDs showed reversible fluorescence response in acid solutions (blue emissions) and alkaline solutions (green emissions). The fluorescence emissions of B-PDs demonstrated an obvious red shift with varying the pH value from 1 - 13. Moreover, glucose could assemble on the surface of B-PDs due to the reversible reaction between boronic acid and cis-diols, which resulted in a blue shift of emission wavelength and an obvious increase of FL intensity at λex = 380 nm based on the aggregation-induced enhancement effect. The glucose sensing method was thus developed in the range 0.0001 - 1.0 mol L−1. Applications to real human blood and glucose injection samples demonstrated satisfactory results. The B-PDs based on the analytical method display good selectivity, wide detection range, and simplicity in preparation and detection, implying promising applications as a practical platform for biosensing.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Jing X, Wang H, Huang X, Chen Z, Zhu J, Wang X (2021) Digital image colorimetry detection of carbaryl in food samples based on liquid phase microextraction coupled with a microfluidic thread-based analytical device. Food Chem 337:127971. https://doi.org/10.1016/j.foodchem.2020.127971

    Article  CAS  PubMed  Google Scholar 

  2. Klonoff DC (1997) Noninvasive blood glucose monitoring. Diabetes Care 20:433–437. https://doi.org/10.2337/diacare.20.3.433

    Article  CAS  PubMed  Google Scholar 

  3. Gray WN, Dolan LM, Hood KK (2013) Impact of blood glucose monitoring affect on family conflict and glycemic control in adolescents with type 1 diabetes. Diabetes Res Clin Pract 99:130–135. https://doi.org/10.1016/j.diabres.2011.12.020

    Article  PubMed  Google Scholar 

  4. Hatoum IJ, Hu FB, Nelson JJ, Rimm EB (2010) Lipoprotein-associated phospholipase A2 activity and incident coronary heart disease among men and women with type 2 diabetes. Diabetes 59:1239–1243. https://doi.org/10.2337/db09-0730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sun Z, Liu H, Wang X (2021) Thermal self-regulatory intelligent biosensor based on carbon-nanotubes-decorated phase-change microcapsules for enhancement of glucose detection. Biosens Bioelectron 195:113586. https://doi.org/10.1016/j.bios.2021.113586

    Article  CAS  PubMed  Google Scholar 

  6. Liu QL, Yan XH, Yin XM, Situ B, Zhou HK, Lin L, Li B, Gan N, Zheng L (2013) Electrochemical enzyme-linked immunosorbent assay (ELISA) for alpha-fetoprotein based on glucose detection with multienzyme-nanoparticle amplification. Molecules 18:12675–12686. https://doi.org/10.3390/molecules181012675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lascaris B, Freling HG, Edens MA, Fokkert MJ, Olthof CG, & Slingerland RJ (2021). Comparison of Accu Chek Inform II point-of-care test blood glucose meter with hexokinase plasma method for a diabetes mellitus population during surgery under general anesthesia. J Clin Monit Comput. https://doi.org/10.1007/s10877-021-00656-6.

  8. Gonzalez NM, Fitch A, Al-Bazi J (2020) Development of a RP-HPLC method for determination of glucose in Shewanella oneidensis cultures utilizing 1-phenyl-3-methyl-5-pyrazolone derivatization. PLoS ONE 15:e0229990. https://doi.org/10.1371/journal.pone.0229990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shen N, Xu H, Zhao W, Zhao Y, Zhang X (2019) Highly responsive and ultrasensitive non-enzymatic electrochemical glucose sensor based on Au foam. Sensor 19:1203. https://doi.org/10.3390/s19051203

    Article  CAS  PubMed Central  Google Scholar 

  10. Yuan J, Cen Y, Kong XJ, Wu S, Liu CL, Yu RQ, Chu X (2015) MnO2-nanosheet-modified upconversion nanosystem for sensitive turn-on fluorescence detection of H2O2 and glucose in blood. ACS Appl Mater Interfaces 7:10548–10555. https://doi.org/10.1021/acsami.5b02188

    Article  CAS  PubMed  Google Scholar 

  11. Wang H, Yi J, Velado D, Yu Y, Zhou S (2015) Immobilization of carbon dots in molecularly imprinted microgels for optical sensing of glucose at physiological pH. ACS Appl Mater Interfaces 7:15735–15745. https://doi.org/10.1021/acsami.5b04744

    Article  CAS  PubMed  Google Scholar 

  12. Liu PL, Li BW, Zheng J, Liang QQ, Wu CL, Huang LP, Zhang PS, Jia YM, & Wang S (2021). A novel N-nitrosation-based ratiometric fluorescent probe for highly selective imaging endogenous nitric oxide in living cells and zebrafish. Sensors and Actuators B-Chemical 329:12914. ARTN 129147 https://doi.org/10.1016/j.snb.2020.129147.

  13. Kiran S, Misra RD (2015) Mechanism of intracellular detection of glucose through nonenzymatic and boronic acid functionalized carbon dots. J Biomed Mater Res A 103:2888–2897. https://doi.org/10.1002/jbm.a.35421

    Article  CAS  PubMed  Google Scholar 

  14. Zhao C, Jiao Y, Hu F, Yang Y (2018) Green synthesis of carbon dots from pork and application as nanosensors for uric acid detection. Spectrochim Acta A Mol Biomol Spectrosc 190:360–367. https://doi.org/10.1016/j.saa.2017.09.037

    Article  CAS  PubMed  Google Scholar 

  15. Shangguan J, He D, He X, Wang K, Xu F, Liu J, Tang J, Yang X, Huang J (2016) Label-free carbon-dots-based ratiometric fluorescence pH nanoprobes for intracellular pH Sensing. Anal Chem 88:7837–7843. https://doi.org/10.1021/acs.analchem.6b01932

    Article  CAS  PubMed  Google Scholar 

  16. Baig MMF, Chen YC (2017) Bright carbon dots as fluorescence sensing agents for bacteria and curcumin. J Colloid Interface Sci 501:341–349. https://doi.org/10.1016/j.jcis.2017.04.045

    Article  CAS  PubMed  Google Scholar 

  17. Chen L, Liu Y, Cheng G, Fan Z, Yuan J, He S, Zhu G (2021) A novel fluorescent probe based on N, B, F co-doped carbon dots for highly selective and sensitive determination of sulfathiazole. Sci Total Environ 759:143432. https://doi.org/10.1016/j.scitotenv.2020.143432

    Article  CAS  PubMed  Google Scholar 

  18. Chen K, Qing W, Hu W, Lu M, Wang Y, Liu X (2019) On-off-on fluorescent carbon dots from waste tea: their properties, antioxidant and selective detection of CrO42-, Fe3+, ascorbic acid and L-cysteine in real samples. Spectrochim Acta A Mol Biomol Spectrosc 213:228–234. https://doi.org/10.1016/j.saa.2019.01.066

    Article  CAS  PubMed  Google Scholar 

  19. Guo S, Sun Y, Geng X, Yang R, Xiao L, Qu L, Li Z (2020) Intrinsic lysosomal targeting fluorescent carbon dots with ultrastability for long-term lysosome imaging. J Mater Chem B 8:736–742. https://doi.org/10.1039/c9tb02043h

    Article  CAS  PubMed  Google Scholar 

  20. Das P, Bose M, Ganguly S, Mondal S, Das AK, Banerjee S, Das NC (2017) Green approach to photoluminescent carbon dots for imaging of gram-negative bacteria Escherichia coli. Nanotechnology 28:195501. https://doi.org/10.1088/1361-6528/aa6714

    Article  CAS  PubMed  Google Scholar 

  21. Wang L, Wang Y, Wang H, Xu G, Doring A, Daoud WA, Xu J, Rogach AL, Xi Y, Zi Y (2020) Carbon dot-based composite films for simultaneously harvesting raindrop energy and boosting solar energy conversion efficiency in hybrid cells. ACS Nano 14:10359–10369. https://doi.org/10.1021/acsnano.0c03986

    Article  CAS  PubMed  Google Scholar 

  22. Zhang H, Dong X, Wang J, Guan R, Cao D, Chen Q (2019) Fluorescence emission of polyethylenimine-derived polymer dots and its application to detect copper and hypochlorite ions. ACS Appl Mater Interfaces 11:32489–32499. https://doi.org/10.1021/acsami.9b09545

    Article  CAS  PubMed  Google Scholar 

  23. Chen Y, Zhang Y, Lyu TT, Wang Y, Yang XD, Wu XD (2019) A facile strategy for the synthesis of water-soluble fluorescent nonconjugated polymer dots and their application in tetracycline detection. Journal of Materials Chemistry C 7:9241–9247. https://doi.org/10.1039/c9tc02738f

    Article  CAS  Google Scholar 

  24. Bu W, Xu X, Wang Z, Jin N, Liu L, Liu J, Zhu S, Zhang K, Jelinek R, Zhou D, Sun H, Yang B (2020) Ascorbic acid-PEI carbon dots with osteogenic effects as miR-2861 carriers to effectively enhance bone regeneration. ACS Appl Mater Interfaces 12:50287–50302. https://doi.org/10.1021/acsami.0c15425

    Article  CAS  PubMed  Google Scholar 

  25. Zhong Z, Jia L (2019) Room temperature preparation of water-soluble polydopamine-polyethyleneimine copolymer dots for selective detection of copper ions. Talanta 197:584–591. https://doi.org/10.1016/j.talanta.2019.01.070

    Article  CAS  PubMed  Google Scholar 

  26. Liu M, Ji J, Zhang X, Zhang X, Yang B, Deng F, Li Z, Wang K, Yang Y, Wei Y (2015) Self-polymerization of dopamine and polyethyleneimine: novel fluorescent organic nanoprobes for biological imaging applications. J Mater Chem B 3:3476–3482. https://doi.org/10.1039/c4tb02067g

    Article  CAS  PubMed  Google Scholar 

  27. Shi Y, Liu X, Wang M, Huang J, Jiang X, Pang J, Xu F, Zhang X (2019) Synthesis of N-doped carbon quantum dots from bio-waste lignin for selective irons detection and cellular imaging. Int J Biol Macromol 128:537–545. https://doi.org/10.1016/j.ijbiomac.2019.01.146

    Article  CAS  PubMed  Google Scholar 

  28. Shen P, Xia Y (2014) Synthesis-modification integration: one-step fabrication of boronic acid functionalized carbon dots for fluorescent blood sugar sensing. Anal Chem 86:5323–5329. https://doi.org/10.1021/ac5001338

    Article  CAS  PubMed  Google Scholar 

  29. Pathak A, Pv S, Stanley J, Satheesh Babu TG (2019) Multicolor emitting N/S-doped carbon dots as a fluorescent probe for imaging pathogenic bacteria and human buccal epithelial cells. Microchim Acta 186:157. https://doi.org/10.1007/s00604-019-3270-7

    Article  CAS  Google Scholar 

  30. Zhang Q, Wu B, Zhong D, Zhan X, Wang G (2016) Polymer dots of peryleneimide-functionalized polyethyleneimine: facile synthesis and effective fluorescent sensing of iron (III) ions. Macromol Rapid Commun 37:2052–2056. https://doi.org/10.1002/marc.201600536

    Article  CAS  PubMed  Google Scholar 

  31. Yang S, Wang L, Zuo L, Zhao C, Li H, Ding L (2019) Non-conjugated polymer carbon dots for fluorometric determination of metronidazole. Microchim Acta 186:652. https://doi.org/10.1007/s00604-019-3746-5

    Article  CAS  Google Scholar 

  32. Zhu S, Zhang J, Wang L, Song Y, Zhang G, Wang H, Yang B (2012) A general route to make non-conjugated linear polymers luminescent. Chem Commun 48:10889–10891. https://doi.org/10.1039/c2cc36080b

    Article  CAS  Google Scholar 

  33. Wang CX, Xu ZZ, Cheng H, Lin HH, Humphrey MG, Zhang C (2015) A hydrothermal route to water-stable luminescent carbon dots as nanosensors for pH and temperature. Carbon 82:87–95. https://doi.org/10.1016/j.carbon.2014.10.035

    Article  CAS  Google Scholar 

Download references

Funding

We gratefully acknowledge the support from the Fundamental Research Funds for the Central Universities of China (No. 2572021BU07) by Juan Hou, National Natural Science Foundation of China (NSFC, No. 21804017) by Juan Hou, China Postdoctoral Science Foundation (No. 2019M651242) by Juan Hou, and Heilongjiang Postdoctoral Science Fund (LBH-Z18009) by Juan Hou.

Author information

Authors and Affiliations

Authors

Contributions

Juan Hou contributed to the conception of the study and wrote the manuscript; Shuqi Liu performed the experiments; Huiling Liu and Qinqin Chen contributed significantly to data analysis and manuscript preparation; Guang Yang performed the data analysis and constructive discussions.

Corresponding authors

Correspondence to Juan Hou or Guang Yang.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Consent to participate was obtained from the authors.

Consent for publication

Consent to publication was obtained from the authors.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1.82 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Liu, H., Chen, Q. et al. Preparation of boronic acid–modified polymer dots under mild conditions and their applications in pH and glucose detection. Microchim Acta 189, 36 (2022). https://doi.org/10.1007/s00604-021-05137-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-05137-w

Keywords

Navigation