Skip to main content
Log in

A fluorometric clenbuterol immunoassay using sulfur and nitrogen doped carbon quantum dots

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A fluorometric clenbuterol immunoassay is described that uses S- and N-co-doped carbon quantum dots as the fluorescent probe. Strongly fluorescent S/N-doped carbon quantum dots (S/N-CDs) were synthesized by hydrothermal method using fructose as the carbon precursor and L-cysteine as S/N sources. The S/N-CDs were characterized by transmission electron microscopy, energy dispersive spectroscopy and Fourier transform infrared spectroscopy (FTIR). Under 350 nm photoexcitation, they display strong purple fluorescence with an emission peak at 405 nm. In pH 4.0 solution, the amino groups (confirmed by FTIR) on the carbon quantum dots were coupled to clenbuterol antibody (Ab) by amine–amine coupling reaction to quench the fluorescence. If clenbuterol (Clen) is added, it binds to the Ab to generate a stable Ab-Clen immunocomplex and free S/N-CD. This causes the fluorescence of nanoprobe to be restored. The fluorescence of the system increases linearly in the 0.07–1.7 ng·mL−1 Clen concentration range. The probe of type S/N4-CD displays the best sensitivity. The detection limit is 23 pg·mL−1.

Schematic presentation of clenbuterol fluorometric immunoassay using sulfur and nitrogen doped carbon quantum dots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Xu H, Yang X, Li G, Zhao C, Liao X (2015) Green synthesis of fluorescent carbon dots for selective detection of tartrazine in food samples. J Agric Food Chem 63:6707–6714

    Article  CAS  Google Scholar 

  2. Lin L, Luo Y, Tsai P, Wang J, Chen X (2018) Metal ions doped carbon quantum dots: synthesis, physicochemical properties, and their applications. TrAC Trends Anal Chem 103:87–101

    Article  CAS  Google Scholar 

  3. Deng X, Feng Y, Li H, Du Z, Teng Q, Wang H (2018) N-doped carbon quantum dots as fluorescent probes for highly selective and sensitive detection of Fe3+ ions. Particuology 41:94–100

    Article  CAS  Google Scholar 

  4. Yang F, He X, Wang C, Cao Y, Li Y, Yan L, Liu M, Lv M, Yang Y, Zhao X, Li Y (2018) Controllable and eco-friendly synthesis of P-riched carbon quantum dots and its application for copper (II) ion sensing. Appl Surf Sci 448:589–598

    Article  CAS  Google Scholar 

  5. Wu F, Yang M, Zhang H, Zhu S, Zhu X, Wang K (2018) Facile synthesis of sulfur-doped carbon quantum dots from vitamin B1 for highly selective detection of Fe3+ ion. Opt Mater 77:258–263

    Article  CAS  Google Scholar 

  6. Liao S, Zhu F, Zhao X, Yang H, Chen X (2018) A reusable P, N-doped carbon quantum dot fluorescent sensor for cobalt ion. Sensors Actuators B Chem 260:156–164

    Article  CAS  Google Scholar 

  7. Liao S, Zhao X, Zhu F, Chen M, Wu Z, song X, Yang H, Chen X (2018) Novel S, N-doped carbon quantum dot-based “off-on” fluorescent sensor for silver ion and cysteine. Talanta 180:300–308

    Article  CAS  Google Scholar 

  8. Huang S, Yang E, Yao J, Liu Y, Xiao Q (2018) Red emission nitrogen, boron, sulfur co-doped carbon dots for “on-off-on” fluorescent mode detection of Ag+ ions and L-cysteine in complex biological fluids and living cells. Anal Chim Acta 1035:192–202

    Article  CAS  Google Scholar 

  9. Wang R, Xu Y, Zhanga T, Jiang Y (2015) Rapid and sensitive detection of Salmonella typhimurium using aptamer-conjugated carbon dots as fluorescence probe. Anal Methods 7:1701–1706

    Article  CAS  Google Scholar 

  10. Mohammadi S, Salimi A, Hamd-Ghadareh S, Fathi F, Soleimani F (2018) A FRET immunosensor for sensitive detection of CA 15-3 tumor marker in human serum sample and breast cancer cells using antibody functionalized luminescent carbon-dots and AuNPs-dendrimer aptamer as donor-acceptor pair. Anal Biochem 557:18–26

    Article  CAS  Google Scholar 

  11. Liuzzi R, Gallier S, Ringler S, Caserta S, Guido S (2016) Visualization of choline-based phospholipids at the interface of oil/water emulsions with TEPC-15 antibody. Immunofluorescence applied to colloidal systems. RSC Adv 6:109960–109968

    Article  CAS  Google Scholar 

  12. Wang Y, Cai E, Rosenkranz T, Ge P, Teng KW, Lim SJ, Smith AM, Chung HJ, Sachs F, Green WN, Gottlieb P, Selvin PR (2014) Small quantum dots conjugated to nanobodies as immunofluorescence probes for nanometric microscopy. Bioconjug Chem 25:2205–2211

    Article  CAS  Google Scholar 

  13. Darwish NT, Sekaran SD, Alias Y, Khor SM (2018) Immunofluorescence–based biosensor for the determination of dengue virus NS1 in clinical samples. J Pharm Biomed Anal 149:591–602

    Article  CAS  Google Scholar 

  14. Bossuyt X, Cooreman S, Baere HD, Verschueren P, Westhovens R, Blockmans D, Mariën G (2013) Detection of antinuclear antibodies by automated indirect immunofluorescence analysis. Clin Chim Acta 415:101–106

    Article  CAS  Google Scholar 

  15. Bagnall JS, Byun S, Miyamoto DT, Kang JH, Maheswaran S, Stott SL, Tonereg M, Manalis SR (2016) Deformability-based cell selection with downstream immunofluorescence analysis. Integr Biol 8:654–664

    Article  Google Scholar 

  16. Song C, Li J, Liu J, Liu Q (2016) Simple sensitive rapid detection of Escherichia coli O157:H7 in food samples by label-free immunofluorescence strip sensor. Talanta 156/157:42–47

    Article  Google Scholar 

  17. Zhu G, Hu Y, Gao J, Zhong L (2011) Highly sensitive detection of clenbuterol using competitive surface-enhanced Raman scattering immunoassay. Anal Chim Acta 697:61–66

    Article  CAS  Google Scholar 

  18. Wei C, Zong Y, Guo Q, Xu M, Yuan Y, Yao J (2017) Magnetic separation of clenbuterol based on competitive immunoassay and evaluation by surface-enhanced Raman spectroscopy. RSC Adv 7:3388–3397

    Article  CAS  Google Scholar 

  19. Zhu C, Zhao G, Dou W (2018) Immunochromatographic assay using brightly colored silica nanoparticles as visible label for point-of-care detection of clenbuterol. Sensors Actuators B Chem 266:392–399

    Article  CAS  Google Scholar 

  20. Wang P, Wang R, Zhang W, Su X, Luo H (2016) Novel fabrication of immunochromatographic assay based on up conversion phosphors for sensitive detection of clenbuterol. Biosens Bioelectron 77:866–870

    Article  CAS  Google Scholar 

  21. Tang Y, Gao J, Liu X, Gao X, Ma T, Lu X, Li J (2017) Ultrasensitive detection of clenbuterol by a covalent imprinted polymer as a biomimetic antibody. Food Chem 228:62–69

    Article  CAS  Google Scholar 

  22. Ma L, Nilghaz A, Choi JR, Liu X, Lu X (2018) Rapid detection of clenbuterol in milk using microfluidic paper-based ELISA. Food Chem 246:437–441

    Article  CAS  Google Scholar 

  23. Jin X, Fang G, Pan M, Yang Y, Bai X, Wang S (2018) A molecularly imprinted electrochemiluminescence sensor based on upconversion nanoparticles enhanced by electrodeposited rGO for selective and ultrasensitive detection of clenbuterol. Biosens Bioelectron 102:357–364

    Article  CAS  Google Scholar 

  24. Dou Y, Jiang Z, Deng W, Su J, Chen S, Song H, Aldalbahi A, Zuo X, Song S, Shi J, Fan C (2016) Portable detection of clenbuterol using a smartphone-based electrochemical biosensor with electric field-driven acceleration. J Electroanal Chem 781:339–344

    Article  CAS  Google Scholar 

  25. Ji R, Chen S, Xu W, Qin Z, Qiu JF, Li CR (2018) A voltammetric immunosensor for clenbuterol based on the use of a MoS2-AuPt nanocomposite. Microchim Acta 185(4):209–218

    Article  Google Scholar 

  26. Ge Y, Camarada MB, Xu L, Qu M, Liang H, Zhao E, Li M, Wen Y (2018) A highly stable black phosphorene nanocomposite for voltammetric detection of clenbuterol. Microchim Acta 185(12):566–575

    Article  Google Scholar 

  27. Cao X, Li H, Lian L, Xu N, Lou D, Wu Y (2015) A dual-responsive fluorescence method for the detection of clenbuterol based on BSA-protected gold nanoclusters. Anal Chim Acta 871:43–50

    Article  CAS  Google Scholar 

  28. Xu J, Li Y, Guo J, Shen F, Luo Y, Sun C (2014) Fluorescent detection of clenbuterol using fluorophore functionalized gold nanoparticles based on fluorescence resonance energy transfer. Food Control 46:67–74

    Article  CAS  Google Scholar 

  29. Li M, Zhang Y, Xue Y, Hong X, Cui Y, Liu Z, Du D (2017) Simultaneous determination of β2-agonists clenbuterol and salbutamol in water and swine feed samples by dual-labeled time-resolved fluoroimmunoassay. Food Control 73:1039–1044

    Article  CAS  Google Scholar 

  30. Peng T, Wang J, Zhao S, Xie S, Yao K, Zheng P, Wang S, Ke Y, Jiang H (2018) A fluorometric clenbuterol immunoassay based on the use of organic/inorganic hybrid nanoflowers modified with gold nanoclusters and artificial antigen. Microchim Acta 185(8):366–373

    Article  Google Scholar 

  31. Xiao Y, Lu H, Lv S, Xie S, Wang Z, Chen H (2016) Rapid analysis of trace salbutamol and clenbuterol in pork samples by mass spectrometry. Chin J Anal Chem 44(11):1633–1638

    Article  CAS  Google Scholar 

  32. Shellaiah M, Simon T, Venkatesan P, Sun KW, Ko FH, Wu SP (2018) Nanodiamonds conjugated to gold nanoparticles for colorimetric detection of clenbuterol and chromium(III) in urine. Microchim Acta 185(1):74–81

    Article  Google Scholar 

  33. Li F, Zhang R, Kang H, Hu Y, Liu Y, Zhu J (2017) Facile and sensitive detection of clenbuterol in pork using a personal glucose meter. Anal Methods 9:6507–6512

    Article  CAS  Google Scholar 

  34. Simon T, Shellaiah M, Steffi P, Sun KW, Ko FH (2018) Development of extremely stable dual functionalized gold nanoparticles for effective colorimetric detection of clenbuterol and ractopamine in human urine samples. Anal Chim Acta 1023:96–104

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21667006, 21767004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aihui Liang.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 8.98 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, D., Liang, A. & Jiang, Z. A fluorometric clenbuterol immunoassay using sulfur and nitrogen doped carbon quantum dots. Microchim Acta 186, 323 (2019). https://doi.org/10.1007/s00604-019-3431-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3431-8

Keywords

Navigation