Skip to main content
Log in

Electrochemical clenbuterol immunosensor based on a gold electrode modified with zinc sulfide quantum dots and polyaniline

  • Original Paper
  • Published:
Microchimica Acta Aims and scope

Abstract

A nanocomposite consisting of zinc sulfide quantum dots and polyaniline (ZnSQD@PANI) was placed on a gold electrode along with antibody against clenbuterol to give an amperometric immunosensor for clenbuterol. Compared to the use of pristine PANI, the electrode modified with the ZnSQD@PANI nanocomposite adsorbs clenbuterol antibody much better and therefore exhibits higher sensitivity to clenbuterol. The biosensor, when operated at a working potential of 0.21 V (vs. Ag/AgCl), displays a detection limit as low as 5.5 pg⋅mL−1 and works over the 0.01 to 10 ng⋅mL−1 concentration range. Related species such as salbutamol and ractopamine, urine components such as urea and uric acid, and the ions Ca(II), Na(I), and K(I) do not interfere.

A nanocomposite of zinc sulfide quantum dots and polyaniline was synthesized and utilized as the electrode material for detecting clenbuterol hydrochloride (CH). Sensing includes immunoglobulin G anchoring, adsorption of clenbuterol antibody, and detection of clenbuterol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Liu J, Zeng L, Li Z, Gao F, Huang X, Li F, Lin H (2009) Solid substrate-room temperature phosphorimetry for the determination of residual clenbuterol hydrochloride based on the catalysis of sodium periodate oxidizing eosine Y. Anal Chim Acta 638:69–74

    Article  CAS  Google Scholar 

  2. Elliott C, McCaughey W, Shortt H (1993) Residues of the beta-agonist clenbuterol in tissues of medicated farm animals. Food Addit Contam 10:231–244

    Article  CAS  Google Scholar 

  3. Sarmah AK, Meyer MT, Boxall AB (2006) A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65:725–759

    Article  CAS  Google Scholar 

  4. Shao B, Jia X, Zhang J, Meng J, Wu Y, Duan H, Tu X (2009) Multi-residual analysis of 16 β-agonists in pig liver, kidney and muscle by ultra performance liquid chromatography tandem mass spectrometry. Food Chem 114:1115–1121

    Article  CAS  Google Scholar 

  5. Liang WY, Ting Y, Hao SJ, Guo HW (2010) Determination of residual clenbuterol enantiomers in swine urine by high performance liquid chromatography. Chin J Anal Chem 38:833–837

  6. García I, Sarabia L, Ortiz MC, Aldama JM (2004) Three-way models and detection capability of a gas chromatography–mass spectrometry method for the determination of clenbuterol in several biological matrices: the 2002/657/EC European decision. Anal Chim Acta 515:55–63

    Article  Google Scholar 

  7. Zhou H, Zhang Z, He D, Hu Y, Huang Y, Chen D (2004) Flow chemiluminescence sensor for determination of clenbuterol based on molecularly imprinted polymer. Anal Chim Acta 523:237–242

    Article  CAS  Google Scholar 

  8. He P, Shen L, Liu R, Luo Z, Li Z (2011) Direct detection of β-agonists by use of gold nanoparticle-based colorimetric assays. Anal Chem 83:6988–6995

    Article  CAS  Google Scholar 

  9. Bai J, Lai Y, Jiang D, Zeng Y, Xian Y, Xiao F, Zhang N, Hou J, Jin L (2012) Ultrasensitive electrochemical immunoassay based on graphene oxide–Ag composites for rapid determination of clenbuterol. Analyst 137:4349–4355

    Article  CAS  Google Scholar 

  10. Posyniak A, Zmudzki J, Niedzielska J (2003) Screening procedures for clenbuterol residue determination in bovine urine and liver matrices using enzyme-linked immunosorbent assay and liquid chromatography. Anal Chim Acta 483:61–67

    Article  CAS  Google Scholar 

  11. Mitchell J (2010) Small molecule immunosensing using surface plasmon resonance. Sensors 10:7323–7346

    Article  CAS  Google Scholar 

  12. Yan F, Zhang Y, Zhang ZJ, Liu S, He L, Feng X, Zhang H, Zhang Z (2015) Carboxyl-modified graphene for use in an immunoassay for the illegal feed additive clenbuterol using surface plasmon resonance and electrochemical impedance spectroscopy. Microchim Acta 182:855–862

    Article  CAS  Google Scholar 

  13. Zhang L, Si HY, Zhang HL (2008) Highly ordered fluorescent rings by “breath figures” on patterned substrates using polymer-free CdSe quantum dots. J Mater Chem 18:2660–2665

    Article  CAS  Google Scholar 

  14. Zrazhevskiy P, Sena M, Gao X (2010) Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chem Soc Rev 39:4326–4354

    Article  CAS  Google Scholar 

  15. Li Z, Wang Y, Wang J, Tang Z, Pounds JG, Lin Y (2010) Rapid and sensitive detection of protein biomarker using a portable fluorescence biosensor based on quantum dots and a lateral flow test strip. Anal Chem 82:7008–7014

    Article  CAS  Google Scholar 

  16. Wang L, Qi W, Su R, He Z (2013) Facile method to synthesize graphene-ZnS nanocomposites: preparation and application in bioelectrochemistry of hemoglobin. J Solid State Electrochem 17:2595–2602

    Article  CAS  Google Scholar 

  17. Barick K, Bahadur D (2010) Self-assembly of colloidal nanoscale particles: fabrication, properties and applications. J Nanosci Nanotechnol 10:668–689

    Article  CAS  Google Scholar 

  18. Behrendt JM, Sutherland AJ (2009) Quantum dot-polymer bead composites for biological. Biosensing Using Nanomaterials 291

  19. Pich A, Hain J, Lu Y, Boyko V, Prots Y, Adler H-J (2005) Hybrid microgels with ZnS inclusions. Macromolecules 38:6610–6619

    Article  CAS  Google Scholar 

  20. Turner EA, Huang Y, Corrigan JF (2005) Synthetic routes to the encapsulation of II–VI semiconductors in mesoporous hosts. Eur J Inorg Chem 2005:4465–4478

    Article  Google Scholar 

  21. Arya SK, Dey A, Bhansali S (2011) Polyaniline protected gold nanoparticles based mediator and label free electrochemical cortisol biosensor. Biosens Bioelectron 28:166–173

    Article  CAS  Google Scholar 

  22. Li S, Xiong J, Shen J, Qin Y, Li J, Chu F, Kong Y, Deng L (2015) A novel hydrogen peroxide sensor based on Ag nanoparticles decorated polyaniline/graphene composites. J Appl Polym Sci 132

  23. Dey SK, Sarkar D (2014) Effect of Zn source concentration on structural, optical and electrical properties of zinc sulphide–polyaniline (ZnS–PANI) nanocomposite thin films. J Mater Sci Mater Electron 25:5638–5645

    Article  CAS  Google Scholar 

  24. Zhang L, Wei M, Gao C, Wei W, Zhang Y, Liu S (2015) Label-free electrochemical detection of methyltransferase activity and inhibitor screening based on endonuclease HpaII and the deposition of polyaniline. Biosens Bioelectron 73:188–194

    Article  CAS  Google Scholar 

  25. Jablonska A, Gniadek M, Palys B (2015) Enhancement of direct electrocatalytic activity of horseradish peroxidase on polyaniline nanotubes. J Phys Chem C

  26. Zhu Y, Liu E, Luo Z, Hu T, Liu T, Li Z, Zhao Q (2014) A hydroquinone redox electrolyte for polyaniline/SnO2 supercapacitors. Electrochim Acta 118:106–111

    Article  CAS  Google Scholar 

  27. Garai A, Nandi AK (2009) Multiwalled carbon nanotube/polyaniline thermoreversible gel composites. Synth Met 159:1710–1716

    Article  CAS  Google Scholar 

  28. Ayub A, Shakoor A, Elahi A, Rizvi TZ (2015) Optical and electronic properties of layer-by-layer and composite polyaniline-cadmium selenide quantum dot films. Superlattice Microst 84:154–164

    Article  CAS  Google Scholar 

  29. Apte SK, Garaje SN, Arbuj SS, Kale BB, Baeg JO, Mulik UP, Naik SD, Amalnerkar DP, Gosavi SW (2011) A novel template free, one pot large scale synthesis of cubic zinc sulfide nanotriangles and its functionality as an efficient photocatalyst for hydrogen production and dye degradation. J Mater Chem 21:19241–19248

    Article  CAS  Google Scholar 

  30. Wang J, Lim YF, Ho GW (2014) Carbon-ensemble-manipulated ZnS heterostructures for enhanced photocatalytic H2 evolution. Nanoscale 6:9673–9680

    Article  CAS  Google Scholar 

  31. Fang S, Dong X, Zhang Y, Kang M, Liu S, Yan F, He L, Feng X, Wang P, Zhang Z (2014) One-step synthesis of porous cuprous oxide microspheres on reduced graphene oxide for selective detection of mercury ions. New J Chem

  32. Miao P, Han K, Sun H, Yin J, Zhao J, Wang B, Tang Y (2014) Melamine functionalized silver nanoparticles as the probe for electrochemical sensing of clenbuterol. ACS Appl Mater Interfaces 6:8667–8672

    Article  CAS  Google Scholar 

  33. Li Y, Qi P, Ma X, Zhong J (2014) Quick detection technique for clenbuterol hydrochloride by using surface plasmon resonance biosensor. Eur Food Res Technol 239:195–201

    Article  CAS  Google Scholar 

  34. Gaichore RR, Srivastava AK (2012) Multiwalled carbon nanotube-4-tert-butyl calix [6] arene composite electrochemical sensor for clenbuterol hydrochloride determination by means of differential pulse adsorptive stripping voltammetry. J Appl Electrochem 42:979–987

    Article  CAS  Google Scholar 

  35. Zhang X, Zhao H, Xue Y, Wu Z, Zhang Y, He Y, Li X, Yuan Z (2012) Colorimetric sensing of clenbuterol using gold nanoparticles in the presence of melamine. Biosens Bioelectron 34:112–117

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Program for the National Natural Science Foundation of China (NSFC: Account No. 51173172) and Innovative Technology Team of Henan Province (2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihong Zhang.

Ethics declarations

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1192 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Duan, F., He, L. et al. Electrochemical clenbuterol immunosensor based on a gold electrode modified with zinc sulfide quantum dots and polyaniline. Microchim Acta 183, 1089–1097 (2016). https://doi.org/10.1007/s00604-015-1730-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1730-2

Keywords

Navigation