Skip to main content
Log in

Speciation analysis of Tl(I) and Tl(III) after magnetic solid phase extraction using a magnetite nanoparticle composite modified with aminodibenzo-18-crown-6 functionalized MIL-101(Cr)

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe a magnetic metal-organic framework nanocomposite consisting of aminodibenzo-18-crown-6 magnetite nanoparticles and MIL-101(Cr). It was employed to the speciation analysis of Tl(I) and Tl(III) ions. The sorbent is capable of selectively extracting Tl(I) while Tl(III) remains in solution. The total amount of thallium was then determined by reducing Tl(III) to Tl(I) by hydroxylamine hydrochloride and also extracting it. The extraction parameters were optimized by employing design of experiments methodology. Thallium was quantified by ET-AAS. Under optimized conditions, the detection limit is as low as 1.5 ng L−1, the quantification limit is 5.0 ng L−1, the linear range extends from 5 to 400 ng L−1, and the relative standard deviation is <12% (for n = 5 at levels of 5, 50 and 250 ng L−1). The recoveries of real samples analysis were in the range of 90–106%. The method was successfully applied to the analysis of a certified reference material (NIST SRM 1643d water sample) and to various real water samples.

A novel metal-organic framework nanocomposite consisting of aminodibenzo-18-crwon-6 magnetite nanoparticles (Fe3O4@ADB18C6) and MIL-101(Cr) was synthesized, characterized and employed to speciation analysis of Tl(I) and Tl(III).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Shakerian F, Dadfarnia S, Haji Shabani AM, Shiralian Esfahani G (2013) Preconcentration and determination of lead(II) by microextraction based on suspended cadion covered zirconia nano-particles in a surfactant media. Microchim Acta 180:1225–1232

    Article  CAS  Google Scholar 

  2. Zeng SL, Gan N, Weideman-Mera R, Cao YT, Li TH, Sang WG (2013) Enrichment of polychlorinated biphenyl 28 from aqueous solutions using Fe3O4 grafted graphene oxide. Chem Eng J 218:108–115

    Article  CAS  Google Scholar 

  3. Asgharinezhad AA, Jalilian N, Ebrahimzadeh H, Panjali Z (2015) A simple and fast method based on new magnetic ion imprinted polymer nanoparticles for the selective extraction of Ni(II) ions in different food samples. RSC Adv 5:45510–45519

    Article  CAS  Google Scholar 

  4. Jalilian N, Ebrahimzadeh H, Asgharinezhad AA, Molaei K (2017) Extraction and determination of trace amounts of gold(III), palladium(II), platinum(II) and silver(I) with the aid of a magnetic nanosorbent made from Fe3O4-decorated and silica-coated graphene oxide modified with a polypyrrole-polythiophene copolymer. Microchim Acta 184:2191–2200

    Article  CAS  Google Scholar 

  5. Tahmasebi E, Yamini Y (2014) Polythiophene-coated Fe3O4 nanoparticles as a selective adsorbent for magnetic solid-phase extraction of silver(I), gold(III), copper(II) and palladium(II). Microchim Acta 181:543–551

    Article  CAS  Google Scholar 

  6. Cui Y, Liu S, Wei K, Liu Y, Hu Z (2015) Magnetic solid-phase extraction of trace-level mercury(II) ions using magnetic core-shell nanoparticles modified with thiourea-derived chelating agents. Microchim Acta 182:1337–1344

    Article  CAS  Google Scholar 

  7. Mehdinia A, Shoormeij Z, Jabbari A (2017) Trace determination of lead(II) ions by using a magnetic nanocomposite of the type Fe3O4/TiO2/PPy as a sorbent, and FAAS for quantitation. Microchim Acta 184:1529–1537

    Article  CAS  Google Scholar 

  8. Li QL, Wang LL, Wang X, Wang ML, Zhao RS (2016) Magnetic metal-organic nanotubes: an adsorbent for magnetic solid-phase extraction of polychlorinated biphenyls from environmental and biological samples. J Chromatogr A 1449:39–47

    Article  CAS  PubMed  Google Scholar 

  9. Yang Y, Ma X, Feng F, Dang X, Huang J, Chen H (2016) Magnetic solid-phase extraction of triclosan using core-shell Fe3O4@MIL-100 magnetic nanoparticles, and its determination by HPLC with UV detection. Microchim Acta 183:2467–2472

    Article  CAS  Google Scholar 

  10. Kolaei M, Dashtian K, Rafiee Z, Ghaedi M (2016) Ultrasonic-assisted magnetic solid phase extraction of morphine in urine samples by new imprinted polymer-supported on MWCNT- Fe3O4-NPs: central composite design optimization. Ultrason Sonochem 33:240–248

    Article  CAS  PubMed  Google Scholar 

  11. Liu J, Zhao Z, Shao P, Cui F (2015) Activation of peroxy monosulfate with magnetic Fe3O4-MnO2 core-shell nanocomposites for 4-chlorophenol degradation. Chem Eng J 262:854–861

    Article  CAS  Google Scholar 

  12. Rocío-Bautista P, Pacheco-Fernández I, Pasán J, Pino V (2016) Are metal-organic frameworks able to provide a new generation of solid-phase microextraction coatings?-a review. Anal Chim Acta 939:26–41

    Article  CAS  PubMed  Google Scholar 

  13. Maya F, Cabello CP, Frizzarin RM, Estela JM, Palomino GT, Cerdà V (2017) Magnetic solid-phase extraction using metal-organic frameworks (MOFs) and their derived carbons. TrAC, Trends Anal Chem 90:142–152

    Article  CAS  Google Scholar 

  14. Leng K, Sun Y, Li X, Sun S, Xu W (2016) Rapid synthesis of metal–organic frameworks MIL-101 (Cr) without the addition of solvent and hydrofluoric acid. Cryst Growth Des 16:1168–1171

    Article  CAS  Google Scholar 

  15. Escudero LB, Wuilloud RG, Olsina RA (2013) Sensitive determination of thallium species in drinking and natural water by ionic liquid assisted ion-pairing liquid-liquid microextraction and inductively coupled plasma mass spectrometry. J Hazard Mater 244-245:380–386

    Article  CAS  PubMed  Google Scholar 

  16. Afshar EA, Taher MA, Fazelirad H (2017) Ultra-trace determination of thallium (I) using a nanocomposite consisting of magnetite, halloysite nanotubes and dibenzo-18-crown-6 for preconcentration prior to its quantitation by ET-AAS. Microchim Acta 184:791–797

    Article  CAS  Google Scholar 

  17. Baxter MJ, Crews HM, Dennis MJ, Goodall I, Anderson D (1997) The determination of the authenticity of wine from its trace element composition. Food Chem 60:443–450

    Article  CAS  Google Scholar 

  18. Nazari S, Mehri A, Hassannia AS (2017) Fe3O4-modified graphene oxide as a sorbent for sequential magnetic solid phase extraction and dispersive liquid phase microextraction of thallium. Microchim Acta 184:3239–3246

    Article  CAS  Google Scholar 

  19. Medek P, Pavlíčková J, Zbíral J, Čižmárová E, Kubáň V (2001) Inductively coupled plasma mass spectrometric (ICP/MS) determination of thallium in soils and winter rapeseeds. Int J Environ Anal Chem 81:207–219

    Article  CAS  Google Scholar 

  20. Maia SM, Vale MG, Welz B, Curtius AJ (2001) Feasibility of isotope dilution calibration for the determination of thallium in sediment using slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry. Spectrochim Acta B 56:1263–1275

    Article  Google Scholar 

  21. Asami T, Mizui C, Shimada T, Kubota M (1996) Determination of thallium in soils by flame atomic absorption spectrometry. Fresenius J Anal Chem 356:348–351

    Article  CAS  Google Scholar 

  22. Dadfarnia S, Assadollahi T, Shabani AH (2007) Speciation and determination of thallium by on-line microcolumn separation/preconcentration by flow injection–flame atomic absorption spectrometry using immobilized oxine as sorbent. J Hazard Mater 148:446–452

    Article  CAS  PubMed  Google Scholar 

  23. Silva AF, Borges DL, Welz B, Vale MG, Silva MM, Klassen A, Heitmann U (2004) Method development for the determination of thallium in coal using solid sampling graphite furnace atomic absorption spectrometry with continuum source, high-resolution monochromator and CCD array detector. Spectrochim Acta B 59:841–850

    Article  CAS  Google Scholar 

  24. Horiguchi R, Nukatsuka I, Shimizu Y, Sekikawa S, Ohzeki K (2002) Determination of thallium in water by electrothermal AAS with the direct injection of a cellulose nitrate resin suspension used for solid-phase extraction. Bunseki Kagaku 51:675–1679

    Article  CAS  Google Scholar 

  25. Hoeflich LK, Gale RJ, Good ML (1983) Differential pulse polarography and differential pulse anodic stripping voltammetry for determination of trace levels of thallium. Anal Chem 55:1591–1595

    Article  CAS  Google Scholar 

  26. Kalantari H, Manoochehri M (2018) A nanocomposite consisting of MIL-101 (Cr) and functionalized magnetite nanoparticles for extraction and determination of selenium (IV) and selenium (VI). Microchim Acta 185:196

    Article  CAS  Google Scholar 

  27. Wang Y, Chen H, Tang J, Ye G, Ge H, Hu X (2015) Preparation of magnetic metal organic frameworks adsorbent modified with mercapto groups for the extraction and analysis of lead in food samples by flame atomic absorption spectrometry. Food Chem 181:191–197

    Article  CAS  PubMed  Google Scholar 

  28. Asgharinezhad AA, Ebrahimzadeh H (2016) Poly (2-aminobenzothiazole)-coated graphene oxide/magnetite nanoparticles composite as an efficient sorbent for determination of non-steroidal anti-inflammatory drugs in urine sample. J Chromatogr A 1435:18–29

    Article  CAS  PubMed  Google Scholar 

  29. Darroudi A, Arbab Zavar MH, Chamsaz M, Zohuri G, Ashraf N (2012) Ion-imprinted polymer mini-column for on-line preconcentration of thallium(III) and its determination by flame atomic absorption spectrometry. Anal Methods 4:3798–3803

    Article  CAS  Google Scholar 

  30. Gil RA, Pacheco PH, Smichowski P, Olsina RA, Martinez LD (2009) Speciation analysis of thallium using electrothermal AAS following on-line pre-concentration in a microcolumn filled with multiwalled carbon nanotubes. Microchim Acta 167:187–193

    Article  CAS  Google Scholar 

  31. Chamsaz M, Arbab-Zavar MH, Darroudi A, Salehi T (2009) Preconcentration of thallium(I) by single drop microextraction with electrothermal atomic absorption spectroscopy detection using dicyclohexano-18-crown-6 as extractant system. J Hazard Mater 167:597–601

    Article  CAS  PubMed  Google Scholar 

  32. Arbab-Zavar MH, Chamsaz M, Zohuri G, Darroudi A (2011) Synthesis and characterization of nano-pore thallium(III) ion imprinted polymer as a new sorbent for separation and preconcentration of thallium. J Hazard Mater 185:38–43

    Article  CAS  PubMed  Google Scholar 

  33. Asadpour S, Chamsaz M, Entezari MH, Haron MJ, Ghows N (2016) On-line preconcentration of ultra-trace thallium(I) in water samples with titanium dioxide nanoparticles and determination by graphite furnace atomic absorption spectrometry. Arab J Chem 9:S1833–S1839

    Article  CAS  Google Scholar 

  34. Karatepe A, Soylak M, Elçi L (2011) Selective preconcentration of thallium species as chloro and iodo complexes on Chromosorb 105 resin prior to electrothermal atomic absorption spectrometry. Talanta 85:1974–1979

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Iran National Science Foundation for their help in funding the project (Project No. 97000284).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahboobeh Manoochehri.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 864 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezabeyk, S., Manoochehri, M. Speciation analysis of Tl(I) and Tl(III) after magnetic solid phase extraction using a magnetite nanoparticle composite modified with aminodibenzo-18-crown-6 functionalized MIL-101(Cr). Microchim Acta 185, 365 (2018). https://doi.org/10.1007/s00604-018-2881-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2881-8

Keywords

Navigation