Skip to main content
Log in

Trace determination of lead(II) ions by using a magnetic nanocomposite of the type Fe3O4/TiO2/PPy as a sorbent, and FAAS for quantitation

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe a magnetic nanoadsorbent consisting of magnetite nanoparticles coated first with titanium dioxide and then with polypyrrole (PPy). It is shown to be a viable material for magnetic solid-phase extraction of trace amount of Pb(II). The magnetic titanium dioxide nanoparticles were synthesized first and then modified with PPy via in-situ electropolymerization. The properties, morphology, and composition of the sorbent were characterized by FTIR, scanning electron microscopy, energy-dispersive X-ray analysis and vibrating sample magnetometry. The effects of pH value, extraction time, type and concentration of eluent, and of sample volume were optimized. Under the optimum conditions, the limit of detection (for S/N = 3) is 0.28 μg⋅L−1. The maximum adsorption capacity of the adsorbent is 126 mg⋅g−1 of Pb(II). The accuracy of the method was investigated by analysis of a Certified Reference Material and the obtained value (0.119 μg⋅g−1) was in good agreement with the certified value (0.120 μg⋅g−1). The method was successfully applied to the determination of Pb(II) in a gastropod and spiked environmental and marine water samples. It gave recoveries in the range from 94.4 to 103.1%.

Magnetic titanium dioxide nanoparticles were synthesized and modified with PPy via in situ polymerization. The Fe3O4/TiO2/PPy nanocomposite was used for solid-phase extraction and pre-concentration of trace amount of lead(II) ions in complex matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Xu J, Wu P, Ye EC, Yuan BF, Feng YQ (2016) Metal oxides in sample pretreatment: a review. Trends Anal Chem 80:41–56. doi:10.1016/j.trac.2016.02.027

    Article  CAS  Google Scholar 

  2. Habila M, Yilmaz E, ALOthman ZA, Soylak M (2014) Flame atomic absorption spectrometric determination of Cd, Pb, and Cu in food samples after preconcentration using 4-(2-thiazolylazo) resorcinol-modified activated carbon. J Ind Eng Chem 20:3989–3993. doi:10.1016/j.jiec.2013.12.101

    Article  CAS  Google Scholar 

  3. Nawrocki J, Dunlap C, McCormick A, Carr PW (2004) Part I. Chromatography using ultra-stable metal oxide-based stationary phases for HPLC. J Chromatogr A 1028:1–30. doi:10.1016/j.chroma.2003.11.052

    Article  CAS  Google Scholar 

  4. Figueroa A, Corradini C, Feibush B, Karger BL (1986) High-performance immobilized-metal affinity chromatography of proteins of iminodiacetic acid silica-based bonded phases. J Chromatogr A 371:335–352. doi:10.1016/S0021-9673(01)94717-X

    Article  CAS  Google Scholar 

  5. Liang P, Ding Q, Liu Y (2006) Speciation of chromium by selective separation and preconcentration of Cr(III) on an immobilized nanometer titanium dioxide microcolumn. J Sep Sci 29:242–247. doi:10.1002/jssc.200500301

    Article  CAS  Google Scholar 

  6. Liang P, Qin Y, Hu B, Li C, Peng T, Jiang Z (2000) Study of the adsorption behavior of heavy metal ions on nanometer-size titanium dioxide with ICP-AES. Fresenius J Anal Chem 368:638–640. doi:10.1007/s00216000054

    Article  CAS  Google Scholar 

  7. Li XS, Xu LD, Shan YB, Yuan BF, Feng YQ (2012) Preparation of magnetic poly(diethyl vinylphosphonate-co-ethylene glycol dimethacrylate) for the determination of chlorophenols in water samples. J Chromatogr A 1265:24–30. doi:10.1016/j.chroma.2012.09.083

    Article  CAS  Google Scholar 

  8. Huang D, Deng C, Zhang X (2014) Functionalized magnetic nanomaterials as solid- phase extraction adsorbents for organic pollutants in environmental analysis: a review. Anal Methods 6:7130–7141. doi:10.1039/C4AY01100G

    Article  CAS  Google Scholar 

  9. Manzoori JL, Amjadi M, Hallaj T (2009) Preconcentration of trace cadmium and manganese using 1-(2-pyridylazo)-2-naphthol-modified TiO2 nanoparticles and their determination by flame atomic absorption spectrometry. Int J Environ Anal Chem 89:749–758. doi:10.1080/03067310902736955

    Article  CAS  Google Scholar 

  10. Ma X, Huang B, Cheng M (2007) Analysis of trace mercury in water by solid phase extraction using dithizone modified nanometer titanium dioxide and cold vapor atomic absorption spectrometry. Rare Metals 26:541–546. doi:10.1016/S1001-0521(08)60004-2

    Article  CAS  Google Scholar 

  11. Zhou J, Hou W, Qi P, Gao X, Luo Z, Cen K (2013) CeO2–TiO2 sorbents for the removal of elemental mercury from syngas. Environ Sci Technol 47:10056–10062. doi:10.1021/es401681y

    Article  CAS  Google Scholar 

  12. Lian N, Chang X, Zheng H, Wang S, Cui Y, Zhai Y (2005) Application of dithizone-modified TiO2 nanoparticles in the Preconcentration of trace chromium and lead from sample solution and determination by inductively coupled plasma atomic emission spectrometry. Microchim Acta 151:81–88. doi:10.1007/s00604-005-0381-0

    Article  CAS  Google Scholar 

  13. Yang Y, Wen J, Wei J, Xiong R, Shi J, Pan C (2013) Polypyrrole-decorated Ag TiO2 nanofibers exhibiting enhanced photocatalytic activity under visible light illumination. ACS Appl Mater Interfaces 5:6201–6207. doi:10.1021/am401167y

    Article  CAS  Google Scholar 

  14. Zhang Z, Yuan Y, Liang L, Cheng Y, Xu H, Shi G, Jin L (2008) Preparation and photoelectrochemical properties of a hybrid electrode composed of polypyrrole encapsulated in highly ordered titanium dioxide nanotube array. Thin Solid Films 516:8663–8667. doi:10.1016/j.tsf.2008.04.079

    Article  CAS  Google Scholar 

  15. Alumaa A, Hallik A, Sammelselg V, Tamm J (2007) On the improvement of stability of polypyrrole films in aqueous solutions. Synth Met 157:485–491. doi:10.1016/j.synthmet.2007.05.006

    Article  CAS  Google Scholar 

  16. Farooq U, Khan MA, Athar M, Kozinski JA (2011) Effect of modification of environmentally friendly biosorbent wheat (Triticum aestivum) on the biosorptive removal of cadmium (II) ions from aqueous solution. Chem Eng J 171:400–410. doi:10.1016/j.cej.2011.03.094

    Article  CAS  Google Scholar 

  17. Bianchin JN, Martendal E, Mior R, Alves VN, Araújo CST, Coelho NMM, Carasek E (2009) Development of a flow system for the determination of cadmium in fuel alcohol using vermicompost as biosorbent and flame atomic absorption spectrometry. Talanta 78:333–336. doi:10.1016/j.talanta.2008.11.012

    Article  CAS  Google Scholar 

  18. Musico YLF, Santos CM, Dalida MLP, Rodrigues DF (2013) Improved removal of lead (II) from water using a polymer-based graphene oxide nanocomposite. J Mater Chem A 11:3789–3796. doi:10.1039/C3TA01616A

    Article  Google Scholar 

  19. Wang Y, Chen H, Tang J, Ye G, Ge H, Hu X (2015) Preparation of magnetic metal organic frameworks adsorbent modified with mercapto groups for the extraction and analysis of lead in food samples by flame atomic absorption spectrometry. Food Chem 181:191–197. doi:10.1016/j.foodchem.2015.02.080

    Article  CAS  Google Scholar 

  20. Mehdinia A, Kayyal TB, Jabbari A, Aziz-Zanjani MO, Ziaei E (2013) Magnetic molecularly imprinted nanoparticles based on graftingpolymerization for selective detection of 4-nitrophenol in aqueous samples. J Chromatogr A 1283:82–88. doi:10.1016/j.chroma.2013.01.093

    Article  CAS  Google Scholar 

  21. Li Y, Zhang M, Guo M, Wang X (2009a) Preparation and properties of a nano TiO2/Fe3O4 composite superparamagnetic photocatalyst. Rare Met 28:423–427. doi:10.1007/s12598-009-0082-7

    Article  CAS  Google Scholar 

  22. Mehdinia A, Asiabi M, Jabbari A (2015) Trace analysis of Pt (IV) metal ions in roadside soil and water samples by Fe3O4/graphene/polypyrrole nanocomposite as a solid-phase extraction sorbent followed by atomic absorption spectrometry. Int J Environ Anal Chem 95:1099–1111. doi:10.1080/03067319.2015.1085523

    Article  CAS  Google Scholar 

  23. Li J, Feng J, Yan W (2013) Synthesis of polypyrrole-modified TiO2 composite adsorbent and its adsorption performance on acid red G. J Appl Polym Sci 128:3231–3239. doi:10.1002/app.38525

    Article  CAS  Google Scholar 

  24. Cheng Q, He Y, Pavlinek V, Li C, Saha P (2008) Surfactant-assisted polypyrrole/titanate composite nanofibers: Morphology, structure and electrical properties. Synth Met 158:953–957. doi:10.1016/j.synthmet.2008.06.022

    Article  CAS  Google Scholar 

  25. Xu JC, Liu WM, Li HL (2005a) Titanium dioxide doped polyaniline. Mater Sci Eng C Mater Biol Appl 25:444–447. doi:10.1016/j.msec.2004.11.003

    Article  Google Scholar 

  26. George S (2000) Infrared and Raman characteristic group frequencies tables and charts, third edn. Wiley, New York

    Google Scholar 

  27. Xie Y, Du H (2012) Electrochemical capacitance performance of polypyrrole–titania nanotube hybrid. J Solid State Electrochem 16:2683–2689. doi:10.1007/s10008-012-1696-5

    Article  CAS  Google Scholar 

  28. Xu JC, Liu WM, Li HL (2005b) Titanium dioxide doped polyaniline. Mater Sci Eng C 25:444–447. doi:10.1016/j.msec.2004.11.003

    Article  Google Scholar 

  29. Behbahani M, Bide Y, Bagheri S, Salarian M, Omidi F, Nabid MR (2016) A pH responsive nanogel composed of magnetite, silica and poly(4-vinylpyridine) for extraction of Cd(II), Cu(II), Ni(II) and Pb(II). Microchim Acta 183:111–121. doi:10.1007/s00604-015-1603-8

    Article  CAS  Google Scholar 

  30. Pytlakowska K (2016) Dispersive micro solid-phase extraction of heavy metals as their complexes with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol using graphene oxide nanoparticles. Microchim Acta 183:91–99. doi:10.1007/s00604-015-1596-3

    Article  CAS  Google Scholar 

  31. Suleiman JS, Hu B, Peng H, Huang C (2009) Separation/preconcentration of trace amounts of Cr, Cu and Pb in environmental samples by magnetic solid phase extraction with bismuthiol-II-immobilized magnetic nanoparticles and their determination by ICP-OES. Talanta 77:1579–1583. doi:10.1016/j.talanta.2008.09.049

    Article  CAS  Google Scholar 

  32. Barbosa AF, Segatelli MG, Pereira AC, Santos AS, Kubota LT, Luccas PO, Tarley CRT (2007) Solid-phase extraction system for Pb2+ ions enrichment based on multiwall carbon nanotubes coupled on-line to flame atomic absorption spectrometry. Talanta 71:1512–1519. doi:10.1016/j.talanta.2006.07.026

    Article  CAS  Google Scholar 

  33. Li Z, Chang X, Hu Z, Huang X, Zou X, Wu Q, Nie R (2009b) Zincon-modified activated carbon for solid-phase extraction and preconcentration of trace lead and chromium from environmental samples. J Hazard Mater 166:133–137. doi:10.1016/j.jhazmat.2008.11.006

    Article  CAS  Google Scholar 

  34. Karimi M, Shabani AM, Dadfarnia S (2015) Deep eutectic solvent-mediated extraction for ligand-less preconcentration of lead and cadmium from environmental samples using magnetic nanoparticles. Microchim Acta 183:563–571. doi:10.1007/s00604-015-1671-9

  35. Pirouz MJ, Beyki MH, Shemirani F (2015) Anhydride functionalised calcium ferrite nanoparticles: a new selective magnetic material for enrichment of lead ions from water and food samples. Food Chem 170:131–137. doi:10.1016/j.foodchem.2014.08.046

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Mehdinia.

Ethics declarations

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 84 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehdinia, A., Shoormeij, Z. & Jabbari, A. Trace determination of lead(II) ions by using a magnetic nanocomposite of the type Fe3O4/TiO2/PPy as a sorbent, and FAAS for quantitation. Microchim Acta 184, 1529–1537 (2017). https://doi.org/10.1007/s00604-017-2156-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2156-9

Keywords

Navigation