Skip to main content
Log in

A nanocomposite consisting of MIL-101(Cr) and functionalized magnetite nanoparticles for extraction and determination of selenium(IV) and selenium(VI)

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A metal-organic framework nanocomposite was synthesized and applied to speciation analysis of Se(IV) and Se(VI). The sorbent is composed of MIL-101(Cr) and magnetite nanoparticles modified with dithiocarbamate. It is capably of selectively extracting Se(IV) at pH = 1.85, while Se(VI) remains in solution. The total amount of selenium can then be determined by reducing Se(VI) to Se(IV) and also extracting it. The extraction parameters were optimized by employing design-of-experiments methodology. Selenium was then quantified by electrothermal AAS. Figures of merit include (a) a 10 ng·L−1 limit of detection, (b) a linear response in the 30 ng·L−1 to 10 μg·L−1 concentration range, and (a) a relative standard deviation of <11.5% for Se(IV). The method was validated by analyzing certified reference materials (water and tomato leaves). It was also applied to the speciation analysis of Se(IV) and Se(VI) in (spiked) water samples and of total selenium in agricultural samples.

Schematic of the synthesis of a metal-organic framework nanocomposite for speciation analysis of Se(IV) and Se(VI). The sorbent is composed of MIL-101(Cr) and magnetite nanoparticles modified with dithiocarbamate. Selenium can be quantified by electrothermal AAS with a 10 ng L−1 detection limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Shakerian F, Dadfarnia S, Haji Shabani AM, Shiralian Esfahani G (2013) Preconcentration and determination of lead(II) by microextraction based on suspended cadion covered zirconia nano-particles in a surfactant media. Microchim Acta 180:1225–1232

    Article  CAS  Google Scholar 

  2. Zeng SL, Gan N, Weideman-Mera R, Cao YT, Li TH, Sang WG (2013) Enrichment of polychlorinated biphenyl 28 from aqueous solutions using Fe3O4 grafted graphene oxide. Chem Eng J 218:108–115

    Article  CAS  Google Scholar 

  3. Asgharinezhad AA, Jalilian N, Ebrahimzadeh H, Panjali Z (2015) A simple and fast method based on new magnetic ion imprinted polymer nanoparticles for the selective extraction of Ni(II) ions in different food samples. RSC Adv 5:45510–45519

    Article  CAS  Google Scholar 

  4. Jalilian N, Ebrahimzadeh H, Asgharinezhad AA, Molaei K (2017) Extraction and determination of trace amounts of gold(III), palladium(II), platinum(II) and silver(I) with the aid of a magnetic nanosorbent made from Fe3O4-decorated and silica-coated graphene oxide modified with a polypyrrole-polythiophene copolymer. Microchim Acta 184:2191–2200

    Article  CAS  Google Scholar 

  5. Tahmasebi E, Yamini Y (2014) Polythiophene-coated Fe3O4 nanoparticles as a selective adsorbent for magnetic solid-phase extraction of silver(I), gold(III), copper(II) and palladium(II). Microchim Acta 181:543–551

    Article  CAS  Google Scholar 

  6. Cui Y, Liu S, Wei K, Liu Y, Hu Z (2015) Magnetic solid-phase extraction of trace-level mercury(II) ions using magnetic core-shell nanoparticles modified with thiourea-derived chelating agents. Microchim Acta 182:1337–1344

    Article  CAS  Google Scholar 

  7. Mehdinia A, Shoormeij Z, Jabbari A (2017) Trace determination of lead(II) ions by using a magnetic nanocomposite of the type Fe3O4/TiO2/PPy as a sorbent, and FAAS for quantitation. Microchim Acta 184:1529–1537

    Article  CAS  Google Scholar 

  8. Li QL, Wang LL, Wang X, Wang ML, Zhao RS (2016) Magnetic metal-organic nanotubes: an adsorbent for magnetic solid-phase extraction of polychlorinated biphenyls from environmental and biological samples. J Chromatogr A 1449:39–47

    Article  CAS  Google Scholar 

  9. Yang Y, Ma X, Feng F, Dang X, Huang J, Chen H (2016) Magnetic solid-phase extraction of triclosan using core-shell Fe3O4@MIL-100 magnetic nanoparticles, and its determination by HPLC with UV detection. Microchim Acta 183:2467–2472

    Article  CAS  Google Scholar 

  10. Kolaei M, Dashtian K, Rafiee Z, Ghaedi M (2016) Ultrasonic-assisted magnetic solid phase extraction of morphine in urine samples by new imprinted polymer-supported on MWCNT- Fe3O4-NPs: central composite design optimization. Ultrason Sonochem 33:240–248

    Article  CAS  Google Scholar 

  11. Liu J, Zhao Z, Shao P, Cui F (2015) Activation of peroxy monosulfate with magnetic Fe3O4-MnO2 core-shell nanocomposites for 4-chlorophenol degradation. Chem Eng J 262:854–861

    Article  CAS  Google Scholar 

  12. Rocío-Bautista P, Pacheco-Fernández I, Pasán J, Pino V (2016) Are metal-organic frameworks able to provide a new generation of solid-phase microextraction coatings?-a review. Anal Chim Acta 939:26–41

    Article  Google Scholar 

  13. Maya F, Cabello CP, Frizzarin RM, Estela JM, Palomino GT, Cerdà V (2017) Magnetic solid-phase extraction using metal-organic frameworks (MOFs) and their derived carbons. TrAC Trends Anal Chemistry 90:142–152

    Article  CAS  Google Scholar 

  14. Saikia M, Bhuyan D, Saikia L (2015) Facile synthesis of Fe3O4 nanoparticles on metal organic framework MIL-101 (Cr): characterization and catalytic activity. New J Chem 39:64–67

    Article  CAS  Google Scholar 

  15. Zhang Q, Yang G (2014) Selenium speciation in bay scallops by high performance liquid chromatography separation and inductively coupled plasma mass spectrometry detection after complete enzymatic extraction. J Chromatogr A 1325:83–91

    Article  CAS  Google Scholar 

  16. Pan F, Tyson JF, Uden PC (2007) Simultaneous speciation of arsenic and selenium in human urine by high-performance liquid chromatography inductively coupled plasma mass spectrometry. J Anal Atom Spect 22:931–937

    Article  CAS  Google Scholar 

  17. Grijalba AC, Martinis EM, Wuilloud RG (2017) Inorganic selenium speciation analysis in allium and brassica vegetables by ionic liquid assisted liquid-liquid microextraction with multivariate optimization. Food Chem 219:102–108

    Article  Google Scholar 

  18. Wang RY, Hsu YL, Chang LF, Jiang SJ (2007) Speciation analysis of arsenic and selenium compounds in environmental and biological samples by ion chromatography-inductively coupled plasma dynamic reaction cell mass spectrometer. Anal Chim Acta 590:239–244

    Article  CAS  Google Scholar 

  19. Combs GF, Combs SB (1986) The role of selenium in nutrition. Academic Press Inc, New York

    Google Scholar 

  20. Pinho J, Canario J, Cesario R, Vale CA (2005) Rapid acid digestion method with ICP-MS detection for the determination of selenium in dry sediments. Anal Chim Acta 551:207–212

    Article  CAS  Google Scholar 

  21. Maplesden DC (1965) Selenium. Geobotany, biochemistry, toxicity and nutrition. Can Vet J 6:37

    Google Scholar 

  22. Stoecker BJ, Hopkins LL (1984) Vanadium. In: Frieden E (ed) Biochemistry of the Essential Ultratrace Elements. Biochemistry of the Elements, vol 3. Springer, Boston

  23. Jagatap SP, Kolekar SS, Han SH, Anuse MA (2013) Liquid-liquid extraction of selenium(IV) and tellurium(IV) by N-n-octylcyclohexamine followed by their spectrophotometric determination. Res J Chem Sci 3:72–81

    CAS  Google Scholar 

  24. La Fuente JM, Sánchez ML, Marchante-Gayón JM, Uria JE, Sanz-Medel A (1996) On-line focused microwave digestion-hydride generation of inorganic and organic selenium: Total determination and inorganic selenium speciation by atomic absorption spectrometry. Spectrochim Acta Part B: Atom Spect 51:1849–1857

    Article  Google Scholar 

  25. Maseko T, Callahan DL, Dunshea FR, Doronila A, Kolev SD, Ng K (2013) Chemical characterization and speciation of organic selenium in cultivated selenium-enriched Agaricusbisporus. Food Chem 141:3681–3687

    Article  CAS  Google Scholar 

  26. Zhang Y, Duan J, He M, Chen B, Hu B (2013) Dispersive liquid-liquid microextraction combined with electrothermal vaporization inductively coupled plasma mass spectrometry for the speciation of inorganic selenium in environmental water samples. Talanta 115:730–736

    Article  CAS  Google Scholar 

  27. Wang X, Chen P, Cao L, Xu G, Yang S, Fang Y, Wang G, Hong X (2017) Selenium speciation in Rice samples by magnetic ionic liquid-based up-and-down-shaker-assisted dispersive liquid-liquid microextraction coupled to graphite furnace atomic absorption spectrometry. Food Anal Methods 10:1653–1660

    Article  Google Scholar 

  28. Lavi N, Alfassi ZB (1995) Determination of trace amounts of copper and selenium in biological samples by chemical separation prior to neutron activation analysis. J Radioanal Nucl Chem 201:13–23

    Article  CAS  Google Scholar 

  29. Tuzen M, Saygi KO, Soylak M (2007) Separation and speciation of selenium in food and water samples by the combination of magnesium hydroxide coprecipitation-graphite furnace atomic absorption spectrometric determination. Talanta 71:424–429

    Article  CAS  Google Scholar 

  30. Singh V, Agrawal HM (2012) Qualitative soil mineral analysis by EDXRF, XRD and AAS probes. Radiat Phys Chem 81:1796–1803

    Article  CAS  Google Scholar 

  31. Sehar S, Naz I, Ali N, Ahmed S (2013) Analysis of elemental concentration using ICP-AES and pathogen indicator in drinking water of Qasim Abad, district Rawalpindi, Pakistan. Environ Monit Assess 185:1129–1135

    Article  CAS  Google Scholar 

  32. Saygi KO, Melek E, Tuzen M, Soylak M (2007) Speciation of selenium(IV) and selenium(VI) in environmental samples by the combination of graphite furnace atomic absorption spectrometric determination and solid phase extraction on Diaion HP-2MG. Talanta 71:1375–1381

    Article  CAS  Google Scholar 

  33. Zhang Y, Chen B, Wu S, He M, Hu B (2016) Graphene oxide-TiO2 composite solid phase extraction combined with graphite furnace atomic absorption spectrometry for the speciation of inorganic selenium in water samples. Talanta 154:474–480

    Article  CAS  Google Scholar 

  34. Wang Y, Xie J, Wu Y, Hu X, Yang C, Xu Q (2013) Determination of trace amounts of se(IV) by hydride generation atomic fluorescence spectrometry after solid-phase extraction using magnetic multi-walled carbon nanotubes. Talanta 112:123–128

    Article  CAS  Google Scholar 

  35. Yang W, Gao Y, Wu L, Hou X, Zheng C, Zhu X (2014) Preconcentration and in-situ photoreduction of trace selenium using TiO2 nanoparticles, followed by its determination by slurry photochemical vapor generation atomic fluorescence spectrometry. Microchim Acta 181:197–204

    Article  CAS  Google Scholar 

  36. Abdolmohammad-Zadeh H, Jouyban A, Amini R, Sadeghi G (2013) Nickel-aluminum layered double hydroxide as a nano-sorbent for the solid phase extraction of selenium, and its determination by continuous flow HG-AAS. Microchim Acta 180:619–626

    Article  CAS  Google Scholar 

  37. Wang Y, Luo X, Tang J, Hu X (2011) Determination of se (IV) using solidified floating organic drop microextraction coupled to ultrasound-assisted back-extraction and hydride generation atomic fluorescence spectrometry. Microchim Acta 173:267–273

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahboobeh Manoochehri.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 488 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalantari, H., Manoochehri, M. A nanocomposite consisting of MIL-101(Cr) and functionalized magnetite nanoparticles for extraction and determination of selenium(IV) and selenium(VI). Microchim Acta 185, 196 (2018). https://doi.org/10.1007/s00604-018-2731-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2731-8

Keywords

Navigation