Skip to main content

Magnetic nanoparticle based solid-phase extraction of heavy metal ions: A review on recent advances

Abstract

This review (with 151 refs) focuses on recent progress that has been made in magnetic nanoparticle-based solid phase extraction (SPE), pre-concentration and speciation of heavy metal ions. In addition, it discusses applications to complex real samples such as environmental, food, and biological matrices. The introduction addresses current obstacles and limitations associated with established SPE approaches and discusses the present state of the art in different formats of off-line and on-line SPE. The next section covers magnetized inorganic nanomaterials for use in SPE, with subsections on magnetic silica, magnetic alumina and titania, and on magnetic layered double oxides. A further section treats magnetized carbonaceous nanomaterials for use in SPE, with subsections on magnetic graphene and/or graphene oxides, magnetic carbon nanotubes and magnetic carbon nitrides. We then discuss the progress made in SPE based on the use of magnetized organic polymers (mainly non-imprinted and ion-imprinted polymer). This is followed by shorter sections on the use of magnetized metal organic frameworks, magnetized ionic liquids and magnetized biosorbents. All sections include discussions of the nanomaterials in terms of selectivity, sorption capacity, mechanisms of sorption and common routes for material synthesis. A concluding section addresses actual challenges and discusses perspective routes towards further improvements.

An overview on booster nanomaterials (ionic liquids, inorganic, organic and biological materials, and metal-organic frameworks) for use in magnetic nanoparticle-based solid-phase extraction of heavy metal ions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Giakisikli G, Anthemidis AN (2013) Magnetic materials as sorbents for metal/metalloid preconcentration and/or separation. A review. Anal Chim Acta 789:1–16

    CAS  Article  Google Scholar 

  2. 2.

    Tobiasz A, Walas S (2014) Solid-phase-extraction procedures for atomic spectrometry determination of copper. Trends Anal Chem 62:106–122

    CAS  Article  Google Scholar 

  3. 3.

    Wu D, Sun S (2016) Speciation analysis of As, Sb and Se. Trends Environ Anal Chem 11:9–22

    CAS  Article  Google Scholar 

  4. 4.

    Escudero LB, Maniero MÁ, Agostini E, Smichowski PN (2016) Biological substrates: Green alternatives in trace elemental preconcentration and speciation analysis. Trends Anal Chem 80:531–546

    CAS  Article  Google Scholar 

  5. 5.

    He M, Huang L, Zhao B, Chen B, Hu B (2017) Advanced functional materials in solid phase extraction for ICP-MS determination of trace elements and their species-A review. Anal Chim Acta.

  6. 6.

    Majedi SM, Lee HK (2016) Recent advances in the separation and quantification of metallic nanoparticles and ions in the environment. Trends Anal Chem 75:183–196

    CAS  Article  Google Scholar 

  7. 7.

    Bendicho C, Bendicho-Lavilla C, Lavilla I (2016) Nanoparticle-assisted chemical speciation of trace elements. Trends Anal Chem 77:109–121

    CAS  Article  Google Scholar 

  8. 8.

    Andrade-Eiroa A, Canle M, Leroy-Cancellieri V, Cerdà V (2016) Solid-phase extraction of organic compounds: A critical review (Part I). Trends Anal Chem 80:641–654

    CAS  Article  Google Scholar 

  9. 9.

    Wells DA (2013) Solid-Phase Extraction with Cartridges☆. In: Reference Module in Chemistry, Molecular Sciences and Chemical Engineering Elsevier

  10. 10.

    Moldoveanu S, David V (2015) Chapter 7 - Solid-Phase Extraction. In: Modern Sample Preparation for Chromatography Elsevier, Amsterdam, pp. 191-286

  11. 11.

    Poole CF (2002) Chapter 12 Principles and practice of solid-phase extraction. In: Comprehensive Analytical Chemistry Elsevier, pp. 341-387

  12. 12.

    Erger C, Schmidt TC (2014) Disk-based solid-phase extraction analysis of organic substances in water. Trends Anal Chem 61:74–82

    CAS  Article  Google Scholar 

  13. 13.

    Płotka-Wasylka J, Szczepańska N, de la Guardia M, Namieśnik J (2016) Modern trends in solid phase extraction: new sorbent media. Trends Anal Chem 77:23–43

    Article  CAS  Google Scholar 

  14. 14.

    Baltussen E, Sandra P, David F, Cramers C (1999) Stir bar sorptive extraction (SBSE), a novel extraction technique for aqueous samples: theory and principles. J Microcolumn Sep 11:737–747

    CAS  Article  Google Scholar 

  15. 15.

    Kabir A, Furton KG, Malik A (2013) Innovations in sol-gel microextraction phases for solvent-free sample preparation in analytical chemistry. Trends Anal Chem 45:197–218

    CAS  Article  Google Scholar 

  16. 16.

    Anastassiades M, Lehotay SJ, Štajnbaher D, Schenck FJ (2003) Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J AOAC Int 86:412–431

    CAS  Google Scholar 

  17. 17.

    Ghazaghi M, Shirkhanloo H, Mousavi HZ, Rashidi AM (2015) Ultrasound-assisted dispersive solid phase extraction of cadmium(II) and lead(II) using a hybrid nanoadsorbent composed of graphene and the zeolite clinoptilolite. Microchim Acta 182:1263–1272

    CAS  Article  Google Scholar 

  18. 18.

    Jamshidi M, Ghaedi M, Dashtian K, Hajati S (2015) New ion-imprinted polymer-functionalized mesoporous SBA-15 for selective separation and preconcentration of Cr(iii) ions: modeling and optimization. RSC Adv 5:105789–105799

    CAS  Article  Google Scholar 

  19. 19.

    Rajabi M, Arghavani-Beydokhti S, Barfi B, Asghari A (2017) Dissolvable layered double hydroxide as an efficient nanosorbent for centrifugeless air-agitated dispersive solid-phase extraction of potentially toxic metal ions from bio-fluid samples. Anal Chim Acta 957:1–9

    CAS  Article  Google Scholar 

  20. 20.

    Wang Y, Xie J, Wu Y, Hu X (2014) A magnetic metal-organic framework as a new sorbent for solid-phase extraction of copper(II), and its determination by electrothermal AAS. Microchim Acta 181:949–956

    CAS  Article  Google Scholar 

  21. 21.

    Baghban N, Yilmaz E, Soylak M (2017) Nanodiamond/MoS2 nanorod composite as a novel sorbent for fast and effective vortex-assisted micro solid phase extraction of lead(II) and copper(II) for their flame atomic absorption spectrometric detection. J Mol Liq 234:260–267

    CAS  Article  Google Scholar 

  22. 22.

    Baghban N, Yilmaz E, Soylak M (2017) A magnetic MoS2-Fe3O4 nanocomposite as an effective adsorbent for dispersive solid-phase microextraction of lead(II) and copper(II) prior to their determination by FAAS. Microchim Acta 184:3969–3976

    CAS  Article  Google Scholar 

  23. 23.

    Shirkhanloo H, Khaligh A, Mousavi HZ, Rashidi A (2016) Ultrasound assisted-dispersive-micro-solid phase extraction based on bulky amino bimodal mesoporous silica nanoparticles for speciation of trace manganese (II)/(VII) ions in water samples. Microchem J 124:637–645

    CAS  Article  Google Scholar 

  24. 24.

    Pyrzynska K, Kubiak A, Wysocka I (2016) Application of solid phase extraction procedures for rare earth elements determination in environmental samples. Talanta 154:15–22

    CAS  Article  Google Scholar 

  25. 25.

    Das D, Dutta M, Cervera ML, de la Guardia M (2012) Recent advances in on-line solid-phase pre-concentration for inductively-coupled plasma techniques for determination of mineral elements. Trends Anal Chem 33:35–45

    CAS  Article  Google Scholar 

  26. 26.

    Miró M, Oliveira HM, Segundo MA (2011) Analytical potential of mesofluidic lab-on-a-valve as a front end to column-separation systems. Trends Anal Chem 30:153–164

    Article  CAS  Google Scholar 

  27. 27.

    Leopold K, Philippe A, Wörle K, Schaumann GE (2016) Analytical strategies to the determination of metal-containing nanoparticles in environmental waters. Trends Anal Chem 84:107–120

    CAS  Article  Google Scholar 

  28. 28.

    Rajabi HR, Shamsipur M, Zahedi MM, Roushani M (2015) On-line flow injection solid phase extraction using imprinted polymeric nanobeads for the preconcentration and determination of mercury ions. Chem Eng J 259:330–337

    CAS  Article  Google Scholar 

  29. 29.

    Karadaş C, Turhan O, Kara D (2013) Synthesis and application of a new functionalized resin for use in an on-line, solid phase extraction system for the determination of trace elements in waters and reference cereal materials by flame atomic absorption spectrometry. Food Chem 141:655–661

    Article  CAS  Google Scholar 

  30. 30.

    Acosta M, Savio M, Talio MC, Ferramola ML, Gil RA, Martinez LD (2013) On-line solid phase extraction of Cd from protein fractions of serum using oxidized carbon nanotubes coupled to electrothermal atomization atomic absorption spectrometry. Microchem J 110:94–98

    CAS  Article  Google Scholar 

  31. 31.

    Rossi E, Errea MI, de Cortalezzi MMF, Stripeikis J (2017) Selective determination of Cr (VI) by on-line solid phase extraction FI-SPE-FAAS using an ion exchanger resin as sorbent: An improvement treatment of the analytical signal. Microchem J 130:88–92

    CAS  Article  Google Scholar 

  32. 32.

    Tarley CRT, Corazza MZ, de Oliveira FM, Somera BF, Nascentes CC, Segatelli MG (2017) On-line micro-solid phase preconcentration of Cd2+ coupled to TS-FF-AAS using a novel ion-selective bifunctional hybrid imprinted adsorbent. Microchem J 131:57–69

    CAS  Article  Google Scholar 

  33. 33.

    Lee P-L, Sun Y-C, Ling Y-C (2009) Magnetic nano-adsorbent integrated with lab-on-valve system for trace analysis of multiple heavy metals. J Anal At Spectrom 24:320–327

    CAS  Article  Google Scholar 

  34. 34.

    Li Y, Huang Y-F, Jiang Y, B-l T, Han F, Yan X-P (2011) Displacement solid-phase extraction on mercapto-functionalized magnetite microspheres for inductively coupled plasma mass spectrometric determination of trace noble metals. Anal Chim Acta 692:42–49

    CAS  Article  Google Scholar 

  35. 35.

    Vereda Alonso E, López Guerrero MM, Colorado Cueto P, Barreno Benítez J, Cano Pavón JM, García de Torres A (2016) Development of an on-line solid phase extraction method based on new functionalized magnetic nanoparticles. Use in the determination of mercury in biological and sea-water samples. Talanta 153:228–239

    CAS  Google Scholar 

  36. 36.

    Towler PH, Smith JD, Dixon DR (1996) Magnetic recovery of radium, lead and polonium from seawater samples after preconcentration on a magnetic adsorbent of manganese dioxide coated magnetit. Anal Chim Acta 328:53–59

    CAS  Article  Google Scholar 

  37. 37.

    Rios A, Zougagh M, Bouri M (2013) Magnetic (nano)materials as an useful tool for sample preparation in analytical methods. A review. Anal Methods 5:4558–4573

    CAS  Article  Google Scholar 

  38. 38.

    Xie L, Jiang R, Zhu F, Liu H, Ouyang G (2014) Application of functionalized magnetic nanoparticles in sample preparation. Anal Bioanal Chem 406:377–399

    CAS  Article  Google Scholar 

  39. 39.

    Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110

    CAS  Article  Google Scholar 

  40. 40.

    Wu W, He Q, Jiang C (2008) Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett 3:397

    CAS  Article  Google Scholar 

  41. 41.

    Wierucka M, Biziuk M (2014) Application of magnetic nanoparticles for magnetic solid-phase extraction in preparing biological, environmental and food samples. Trends Anal Chem 59:50–58

    CAS  Article  Google Scholar 

  42. 42.

    Wu P, Xu Z (2005) Silanation of nanostructured mesoporous magnetic particles for heavy metal recovery. Ind Eng Chem Res 44:816–824

    CAS  Article  Google Scholar 

  43. 43.

    Zhai Y, Se D, He Q, Yang X, Han Q (2010) Solid phase extraction and preconcentration of trace mercury(II) from aqueous solution using magnetic nanoparticles doped with 1,5-diphenylcarbazide. Microchim Acta 169:353–360

    CAS  Article  Google Scholar 

  44. 44.

    Mandil A, Idrissi L, Amine A (2010) Stripping voltammetric determination of mercury(II) and lead(II) using screen-printed electrodes modified with gold films, and metal ion preconcentration with thiol-modified magnetic particles. Microchim Acta 170:299–305

    CAS  Article  Google Scholar 

  45. 45.

    Huang C, Xie W, Li X, Zhang J (2011) Speciation of inorganic arsenic in environmental waters using magnetic solid phase extraction and preconcentration followed by ICP-MS. Microchim Acta 173:165–172

    CAS  Article  Google Scholar 

  46. 46.

    Wang Y, Tian T, Wang L, Hu X (2013) Solid-phase preconcentration of cadmium(II) using amino-functionalized magnetic-core silica-shell nanoparticles, and its determination by hydride generation atomic fluorescence spectrometry. Microchim Acta 180:235–242

    CAS  Article  Google Scholar 

  47. 47.

    Zhang N, Peng H, Wang S, Hu B (2011) Fast and selective magnetic solid phase extraction of trace Cd, Mn and Pb in environmental and biological samples and their determination by ICP-MS. Microchim Acta 175:121

    Article  CAS  Google Scholar 

  48. 48.

    Suleiman JS, Hu B, Peng H, Huang C (2009) Separation/preconcentration of trace amounts of Cr, Cu and Pb in environmental samples by magnetic solid-phase extraction with Bismuthiol-II-immobilized magnetic nanoparticles and their determination by ICP-OES. Talanta 77:1579–1583

    CAS  Article  Google Scholar 

  49. 49.

    Zhai Y, He Q, Han Q, Duan S (2012) Solid-phase extraction of trace metal ions with magnetic nanoparticles modified with 2,6-diaminopyridine. Microchim Acta 178:405–412

    CAS  Article  Google Scholar 

  50. 50.

    Cui Y, Liu S, Wei K, Liu Y, Hu Z (2015) Magnetic solid-phase extraction of trace-level mercury(II) ions using magnetic core-shell nanoparticles modified with thiourea-derived chelating agents. Microchim Acta 182:1337–1344

    CAS  Article  Google Scholar 

  51. 51.

    Sharma R, Puri A, Monga Y, Adholeya A (2014) Newly modified silica-based magnetically driven nanoadsorbent: A sustainable and versatile platform for efficient and selective recovery of cadmium from water and fly-ash ameliorated soil. Sep Purif Technol 127:121–130

    CAS  Article  Google Scholar 

  52. 52.

    Abolhasani J, Khanmiri RH, Ghorbani-Kalhor E, Hassanpour A, Asgharinezhad AA, Shekari N, Fathi A (2015) An Fe3O4@ SiO2@ polypyrrole magnetic nanocomposite for the extraction and preconcentration of Cd (II) and Ni (II). Anal Methods 7:313–320

    CAS  Article  Google Scholar 

  53. 53.

    Behbahani M, Bide Y, Bagheri S, Salarian M, Omidi F, Nabid MR (2016) A pH responsive nanogel composed of magnetite, silica and poly (4-vinylpyridine) for extraction of Cd (II), Cu (II), Ni (II) and Pb (II). Microchim Acta 183:111–121

    CAS  Article  Google Scholar 

  54. 54.

    Habila MA, ALOthman ZA, El-Toni AM, Labis JP, Li X, Zhang F, Soylak M (2016) Mercaptobenzothiazole-functionalized magnetic carbon nanospheres of type Fe3. Microchim Acta 183:2377–2384

    CAS  Article  Google Scholar 

  55. 55.

    Amjadi M, Samadi A, Manzoori JL (2015) A composite prepared from halloysite nanotubes and magnetite (Fe3O4) as a new magnetic sorbent for the preconcentration of cadmium(II) prior to its determination by flame atomic absorption spectrometry. Microchim Acta 182:1627–1633

    CAS  Article  Google Scholar 

  56. 56.

    Behbahani M, Akbari AA, Amini MM, Bagheri A (2014) Synthesis and characterization of pyridine-functionalized magnetic mesoporous silica and its application for preconcentration and trace detection of lead and copper ions in fuel products. Anal Methods 6:8785–8792

    CAS  Article  Google Scholar 

  57. 57.

    Zhao B, He M, Chen B, Hu B (2015) Novel ion imprinted magnetic mesoporous silica for selective magnetic solid phase extraction of trace Cd followed by graphite furnace atomic absorption spectrometry detection. Spectrochim Acta B 107:115–124

    CAS  Article  Google Scholar 

  58. 58.

    Khoddami N, Shemirani F (2016) A new magnetic ion-imprinted polymer as a highly selective sorbent for determination of cobalt in biological and environmental samples. Talanta 146:244–252

    CAS  Article  Google Scholar 

  59. 59.

    Diniz KM, Tarley CRT (2015) Speciation analysis of chromium in water samples through sequential combination of dispersive magnetic solid phase extraction using mesoporous amino-functionalized Fe3O4/SiO2 nanoparticles and cloud point extraction. Microchem J 123:185–195

    CAS  Article  Google Scholar 

  60. 60.

    Wang Y, Luo X, Tang J, Hu X, Xu Q, Yang C (2012) Extraction and preconcentration of trace levels of cobalt using functionalized magnetic nanoparticles in a sequential injection lab-on-valve system with detection by electrothermal atomic absorption spectrometry. Anal Chim Acta 713:92–96

    CAS  Article  Google Scholar 

  61. 61.

    Tavallali H, Deilamy-Rad G, Peykarimah P (2013) Preconcentration and speciation of Cr (III) and Cr (VI) in water and soil samples by spectrometric detection via use of nanosized alumina-coated magnetite solid phase. Environ Monit Assess 185:7723–7738

    CAS  Article  Google Scholar 

  62. 62.

    Nyaba L, Matong JM, Nomngongo PN (2016) Nanoparticles consisting of magnetite and Al2O3 for ligandless ultrasound-assisted dispersive solid phase microextraction of Sb, Mo and V prior to their determination by ICP-OES. Microchim Acta 183:1289–1297

    CAS  Article  Google Scholar 

  63. 63.

    Munonde TS, Maxakato NW, Nomngongo PN (2017) Preconcentration and speciation of chromium species using ICP-OES after ultrasound-assisted magnetic solid phase extraction with an amino-modified magnetic nanocomposite prepared from Fe3O4, MnO2 and Al2O3. Microchim Acta 184:1223–1232

    CAS  Article  Google Scholar 

  64. 64.

    Zhang N, Peng H, Hu B (2012) Light-induced pH change and its application to solid phase extraction of trace heavy metals by high-magnetization Fe3O4@SiO2@TiO2 nanoparticles followed by inductively coupled plasma mass spectrometry detection. Talanta 94:278–283

    CAS  Article  Google Scholar 

  65. 65.

    Mehdinia A, Shoormeij Z, Jabbari A (2017) Trace determination of lead(II) ions by using a magnetic nanocomposite of the type Fe3O4/TiO2/PPy as a sorbent, and FAAS for quantitation. Microchim Acta 184:1529–1537

    CAS  Article  Google Scholar 

  66. 66.

    Khezeli T, Daneshfar A (2017) Development of dispersive micro-solid phase extraction based on micro and nano sorbents. Trends Anal Chem

  67. 67.

    Sajid M, Basheer C (2016) Layered double hydroxides: emerging sorbent materials for analytical extractions. Trends Anal Chem 75:174–182

    CAS  Article  Google Scholar 

  68. 68.

    Abdolmohammad-Zadeh H, Talleb Z (2014) Speciation of As(III)/As(V) in water samples by a magnetic solid phase extraction based on Fe3O4/Mg–Al layered double hydroxide nano-hybrid followed by chemiluminescence detection. Talanta 128:147–155

    CAS  Article  Google Scholar 

  69. 69.

    Kardar ZS, Beyki MH, Shemirani F (2016) Takovite-aluminosilicate@MnFe2O4 nanocomposite, a novel magnetic adsorbent for efficient preconcentration of lead ions in food samples. Food Chem 209:241–247

    CAS  Article  Google Scholar 

  70. 70.

    Sitko R, Zawisza B, Malicka E (2013) Graphene as a new sorbent in analytical chemistry. Trends Anal Chem 51:33–43

    CAS  Article  Google Scholar 

  71. 71.

    Bhuyan MSA, Uddin MN, Islam MM, Bipasha FA, Hossain SS (2016) Synthesis of graphene. Int Nano Lett 6:65–83

    CAS  Article  Google Scholar 

  72. 72.

    Wang X, Liu B, Lu Q, Qu Q (2014) Graphene-based materials: Fabrication and application for adsorption in analytical chemistry. J Chromatogr A 1362:1–15

    CAS  Article  Google Scholar 

  73. 73.

    Ziaei E, Mehdinia A, Jabbari A (2014) A novel hierarchical nanobiocomposite of graphene oxide–magnetic chitosan grafted with mercapto as a solid phase extraction sorbent for the determination of mercury ions in environmental water samples. Anal Chim Acta 850:49–56

    CAS  Article  Google Scholar 

  74. 74.

    Rofouei MK, Jamshidi S, Seidi S, Saleh A (2017) A bucky gel consisting of Fe3O4 nanoparticles, graphene oxide and ionic liquid as an efficient sorbent for extraction of heavy metal ions from water prior to their determination by ICP-OES. Microchim Acta 184:3425–3432

    CAS  Article  Google Scholar 

  75. 75.

    Sun J, Liang Q, Han Q, Zhang X, Ding M (2015) One-step synthesis of magnetic graphene oxide nanocomposite and its application in magnetic solid phase extraction of heavy metal ions from biological samples. Talanta 132:557–563

    CAS  Article  Google Scholar 

  76. 76.

    Aliyari E, Alvand M, Shemirani F (2015) Anal Methods 7:7582–7589

    CAS  Article  Google Scholar 

  77. 77.

    Islam A, Ahmad H, Zaidi N, Kumar S (2016) Simultaneous separation and preconcentration of lead and cadmium from water and vegetable samples using a diethylenetriamine-modified magnetic graphene oxide nanocomposite. Microchim Acta 183:289–296

    CAS  Article  Google Scholar 

  78. 78.

    Bahar S, Karami F (2015) Amino-functionalized Fe3O4–graphene oxide nanocomposite as magnetic solid-phase extraction adsorbent combined with flame atomic absorption spectrometry for copper analysis in food samples. J Iran Chem Soc 12:2213–2220

    CAS  Article  Google Scholar 

  79. 79.

    Aliyari E, Alvand M, Shemirani F (2016) Modified surface-active ionic liquid-coated magnetic graphene oxide as a new magnetic solid phase extraction sorbent for preconcentration of trace nickel. RSC Adv 6:64193–64202

    CAS  Article  Google Scholar 

  80. 80.

    Khan M, Yilmaz E, Sevinc B, Sahmetlioglu E, Shah J, Jan MR, Soylak M (2016) Preparation and characterization of magnetic allylamine modified graphene oxide-poly(vinyl acetate-co-divinylbenzene) nanocomposite for vortex assisted magnetic solid phase extraction of some metal ions. Talanta 146:130–137

    CAS  Article  Google Scholar 

  81. 81.

    Alvand M, Shemirani F (2016) Fabrication of Fe3O4@graphene oxide core-shell nanospheres for ferrofluid-based dispersive solid phase extraction as exemplified for Cd(II) as a model analyte. Microchim Acta 183:1749–1757

    CAS  Article  Google Scholar 

  82. 82.

    Mehdinia A, Ramezani M, Jabbari A (2017) Preconcentration and determination of lead ions in fish and mollusk tissues by nanocomposite of Fe3O4@graphene oxide@polyimide as a solid phase extraction sorbent. Food Chem 237:1112–1117

    CAS  Article  Google Scholar 

  83. 83.

    Molaei K, Bagheri H, Asgharinezhad AA, Ebrahimzadeh H, Shamsipur M (2017) SiO2-coated magnetic graphene oxide modified with polypyrrole–polythiophene: A novel and efficient nanocomposite for solid phase extraction of trace amounts of heavy metals Talanta 167:607-616.

  84. 84.

    Seidi S, Fotouhi M (2017) Magnetic dispersive solid phase extraction based on polythiophene modified magnetic graphene oxide for mercury determination in seafood followed by flow-injection cold vapor atomic absorption spectrometry. Analytical Methods 9:803–813

    CAS  Article  Google Scholar 

  85. 85.

    Shamsipur M, Farzin L, Amouzadeh Tabrizi M, Sheibani S (2017) Functionalized Fe3O4/graphene oxide nanocomposites with hairpin aptamers for the separation and preconcentration of trace Pb2+ from biological samples prior to determination by ICP MS. Mater Sci Eng C 77:459–469

    CAS  Article  Google Scholar 

  86. 86.

    Nazari S, Mehri A, Hassannia AS (2017) Fe3O4-modified graphene oxide as a sorbent for sequential magnetic solid phase extraction and dispersive liquid phase microextraction of thallium. Microchim Acta 184:3239–3246

    CAS  Article  Google Scholar 

  87. 87.

    Pérez-López B, Merkoçi A (2012) Carbon nanotubes and graphene in analytical sciences. Microchim Acta 179:1–16

    Article  CAS  Google Scholar 

  88. 88.

    Herrero-Latorre C, Barciela-García J, García-Martín S, Peña-Crecente R, Otárola-Jiménez J (2015) Magnetic solid-phase extraction using carbon nanotubes as sorbents: a review. Anal Chim Acta 892:10–26

    CAS  Article  Google Scholar 

  89. 89.

    Sitko R, Zawisza B, Malicka E (2012) Modification of carbon nanotubes for preconcentration, separation and determination of trace-metal ions. Trends Anal Chem 37:22–31

    CAS  Article  Google Scholar 

  90. 90.

    Daneshvar Tarigh G, Shemirani F (2013) Magnetic multi-wall carbon nanotube nanocomposite as an adsorbent for preconcentration and determination of lead (II) and manganese (II) in various matrices. Talanta 115:744–750

    CAS  Article  Google Scholar 

  91. 91.

    Taghizadeh M, Asgharinezhad AA, Samkhaniany N, Tadjarodi A, Abbaszadeh A, Pooladi M (2014) Solid phase extraction of heavy metal ions based on a novel functionalized magnetic multi-walled carbon nanotube composite with the aid of experimental design methodology. Microchim Acta 181:597–605

    CAS  Article  Google Scholar 

  92. 92.

    Ensafi AA, Rabiei S, Rezaei B, Allafchian AR (2013) Magnetic solid-phase extraction to preconcentrate ultra trace amounts of lead(ii) using modified-carbon nanotubes decorated with NiFe2O4 magnetic nanoparticles. Anal Methods 5:3903–3908

    CAS  Article  Google Scholar 

  93. 93.

    He H, Xiao D, He J, Li H, He H, Dai H, Peng J (2014) Preparation of a core-shell magnetic ion-imprinted polymer via a sol-gel process for selective extraction of Cu(ii) from herbal medicines. Analyst 139:2459–2466

    CAS  Article  Google Scholar 

  94. 94.

    Manoochehri M, Naghibzadeh L (2017) A Nanocomposite Based on Dipyridylamine Functionalized Magnetic Multiwalled Carbon Nanotubes for Separation and Preconcentration of Toxic Elements in Black Tea Leaves and Drinking Water. Food Anal Methods 10:1777–1786

    Article  Google Scholar 

  95. 95.

    Khan M, Yilmaz E, Soylak M (2016) Vortex assisted magnetic solid phase extraction of lead(II) and cobalt(II) on silica coated magnetic multiwalled carbon nanotubes impregnated with 1-(2-pyridylazo)-2-naphthol. J Mol Liq 224:639–647

    CAS  Article  Google Scholar 

  96. 96.

    Zargar B, Khazaeifar A (2017) Synthesis of an ion-imprinted sorbent by surface imprinting of magnetized carbon nanotubes for determination of trace amounts of cadmium ions. Microchim Acta 184:4521–4529

    CAS  Article  Google Scholar 

  97. 97.

    Kazemi E, Dadfarnia S, Haji Shabani AM, Hashemi PS (2017) Synthesis of 2-mercaptobenzothiazole/magnetic nanoparticles modified multi-walled carbon nanotubes for simultaneous solid-phase microextraction of cadmium and lead. Int J Environ Anal Chem 97:743–755

    CAS  Article  Google Scholar 

  98. 98.

    Wang L, Hang X, Chen Y, Wang Y, Feng X (2016) Determination of Cadmium by Magnetic Multiwalled Carbon Nanotube Flow Injection Preconcentration and Graphite Furnace Atomic Absorption Spectrometry. Anal Lett 49:818–830

    CAS  Article  Google Scholar 

  99. 99.

    Peng G, He Q, Lu Y, Huang J, Lin J-M (2017) Flow injection microfluidic device with on-line fluorescent derivatization for the determination of Cr(III) and Cr(VI) in water samples after solid phase extraction. Anal Chim Acta 955:58–66

    CAS  Article  Google Scholar 

  100. 100.

    Speltini A, Sturini M, Maraschi F, Profumo A (2016) Recent trends in the application of the newest carbonaceous materials for magnetic solid-phase extraction of environmental pollutants. Trends Environ Anal Chem 10:11–23

    CAS  Article  Google Scholar 

  101. 101.

    Y-p S, Ha W, Chen J, H-y Q, Y-p S (2016) Advances and applications of graphitic carbon nitride as sorbent in analytical chemistry for sample pretreatment: A review. Trends Anal Chem 84:12–21

    Article  CAS  Google Scholar 

  102. 102.

    Fahimirad B, Asghari A, Rajabi M (2017) Magnetic graphitic carbon nitride nanoparticles covalently modified with an ethylenediamine for dispersive solid-phase extraction of lead(II) and cadmium(II) prior to their quantitation by FAAS. Microchim Acta 184:3027–3035

    CAS  Article  Google Scholar 

  103. 103.

    Li X, Wang Y, Yang X, Chen J, Fu H, Cheng T (2012) Conducting polymers in environmental analysis. Trends Anal Chem 39:163–179

    CAS  Article  Google Scholar 

  104. 104.

    Bagheri H, Ayazi Z, Naderi M (2013) Conductive polymer-based microextraction methods: a review. Anal Chim Acta 767:1–13

    CAS  Article  Google Scholar 

  105. 105.

    Tahmasebi E, Yamini Y (2014) Polythiophene-coated Fe3O4 nanoparticles as a selective adsorbent for magnetic solid-phase extraction of silver(I), gold(III), copper(II) and palladium(II). Microchim Acta 181:543–551

    CAS  Article  Google Scholar 

  106. 106.

    Abolhasani J, Hosseinzadeh Khanmiri R, Babazadeh M, Ghorbani-Kalhor E, Edjlali L, Hassanpour A (2015) Determination of Hg(II) ions in sea food samples after extraction and preconcentration by novel Fe3O4@SiO2@polythiophene magnetic nanocomposite. Environ Monit Assess 187:554

    Article  CAS  Google Scholar 

  107. 107.

    Manoochehri M, Asgharinezhad AA, Shekari N (2015) Synthesis, characterisation and analytical application of Fe3O4@SiO2@polyaminoquinoline magnetic nanocomposite for the extraction and pre-concentration of Cd(II) and Pb(II) in food samples. Food Addit Contam Part A 32:737–747

    CAS  Google Scholar 

  108. 108.

    Shegefti S, Mehdinia A, Shemirani F (2016) Preconcentration of cobalt(II) using polythionine-coated Fe3O4 nanocomposite prior its determination by AAS. Microchim Acta 183:1963–1970

    CAS  Article  Google Scholar 

  109. 109.

    Seidi S, Majd M (2017) Polyaniline-functionalized magnetic graphene oxide for dispersive solid-phase extraction of Cr(VI) from environmental waters followed by graphite furnace atomic absorption spectrometry. J Iran Chem Soc 14:1195–1206

    CAS  Article  Google Scholar 

  110. 110.

    Jalilian N, Ebrahimzadeh H, Asgharinezhad AA, Molaei K (2017) Extraction and determination of trace amounts of gold(III), palladium(II), platinum(II) and silver(I) with the aid of a magnetic nanosorbent made from Fe3O4-decorated and silica-coated graphene oxide modified with a polypyrrole-polythiophene copolymer. Microchim Acta 184:2191–2200

    CAS  Article  Google Scholar 

  111. 111.

    Branger C, Meouche W, Margaillan A (2013) Recent advances on ion-imprinted polymers. React Funct Polym 73:859–875

    CAS  Article  Google Scholar 

  112. 112.

    Shakerian F, Kim K-H, Kwon E, Szulejko JE, Kumar P, Dadfarnia S, Haji Shabani AM (2016) Advanced polymeric materials: Synthesis and analytical application of ion imprinted polymers as selective sorbents for solid phase extraction of metal ions. Trends Anal Chem 83:55–69

    CAS  Article  Google Scholar 

  113. 113.

    Luo X, Huang Y, Deng F, Luo S, Zhan Y, Shu H, Tu X (2012) A magnetic copper (II)-imprinted polymer for the selective enrichment of trace copper (II) ions in environmental water. Microchim Acta 179:283–289

    CAS  Article  Google Scholar 

  114. 114.

    Aboufazeli F, Lotfi Zadeh Zhad HR, Sadeghi O, Karimi M, Najafi E (2013) Novel ion imprinted polymer magnetic mesoporous silica nano-particles for selective separation and determination of lead ions in food samples. Food Chem 141:3459–3465

    CAS  Article  Google Scholar 

  115. 115.

    Panjali Z, Asgharinezhad AA, Ebrahimzadeh H, Karami S, Loni M, Rezvani M, Yarahmadi R, Shahtaheri SJ (2015) Development of a selective sorbent based on a magnetic ion imprinted polymer for the preconcentration and FAAS determination of urinary cadmium. Anal Methods 7:3618–3624

    CAS  Article  Google Scholar 

  116. 116.

    Sayar O, Akbarzadeh Torbati N, Saravani H, Mehrani K, Behbahani A, Moghadam Zadeh HR (2014) A novel magnetic ion imprinted polymer for selective adsorption of trace amounts of lead(II) ions in environment samples. J Ind Eng Chem 20:2657–2662

    CAS  Article  Google Scholar 

  117. 117.

    Najafi E, Aboufazeli F, Lotfi Zadeh Zhad HR, Sadeghi O, Amani V (2013) A novel magnetic ion imprinted nano-polymer for selective separation and determination of low levels of mercury(II) ions in fish samples. Food Chem 141:4040–4045

    CAS  Article  Google Scholar 

  118. 118.

    Asgharinezhad AA, Jalilian N, Ebrahimzadeh H, Panjali Z (2015) A simple and fast method based on new magnetic ion imprinted polymer nanoparticles for the selective extraction of Ni(ii) ions in different food samples. RSC Adv 5:45510–45519

    CAS  Article  Google Scholar 

  119. 119.

    Chen Y, Ma X, Huang M, Peng J, Li C (2016) Use of a new magnetic ion-imprinted nanocomposite adsorbent for selective and rapid preconcentration and determination of trace nickel by flame atomic absorption spectrometry. Anal Methods 8:824–829

    CAS  Article  Google Scholar 

  120. 120.

    Fayazi M, Taher MA, Afzali D, Mostafavi A, Ghanei-Motlagh M (2016) Synthesis and application of novel ion-imprinted polymer coated magnetic multi-walled carbon nanotubes for selective solid phase extraction of lead(II) ions. Mater Sci Eng C 60:365–373

    CAS  Article  Google Scholar 

  121. 121.

    Qi X, Gao S, Ding G, Tang A-N (2017) Synthesis of surface Cr (VI)-imprinted magnetic nanoparticles for selective dispersive solid-phase extraction and determination of Cr (VI) in water samples. Talanta 162:345–353

    CAS  Article  Google Scholar 

  122. 122.

    Kazemi E, Dadfarnia S, Haji Shabani AM, Ranjbar M (2017) Synthesis, characterization, and application of a Zn (II)-imprinted polymer grafted on graphene oxide/magnetic chitosan nanocomposite for selective extraction of zinc ions from different food samples. Food Chem 237:921–928

    CAS  Article  Google Scholar 

  123. 123.

    Dahaghin Z, Mousavi HZ, Sajjadi SM (2017) A novel magnetic ion imprinted polymer as a selective magnetic solid phase for separation of trace lead(II) ions from agricultural products, and optimization using a Box–Behnken design. Food Chem 237:275–281

    CAS  Article  Google Scholar 

  124. 124.

    Kumar P, Pournara A, Kim K-H, Bansal V, Rapti S, Manos MJ (2017) Metal-organic frameworks: challenges and opportunities for ion-exchange/sorption applications. Prog Mater Sci.

  125. 125.

    Rocío-Bautista P, González-Hernández P, Pino V, Pasán J, Afonso AM (2017) Metal-organic frameworks as novel sorbents in dispersive-based microextraction approaches. Trends Anal Chem.

  126. 126.

    Maya F, Cabello CP, Frizzarin RM, Estela JM, Turnes G, Cerdà V (2017) Magnetic solid-phase extraction using metal-organic frameworks (MOFs) and their derived carbons. Trends Anal Chem.

  127. 127.

    Taghizadeh M, Asgharinezhad AA, Pooladi M, Barzin M, Abbaszadeh A, Tadjarodi A (2013) A novel magnetic metal organic framework nanocomposite for extraction and preconcentration of heavy metal ions, and its optimization via experimental design methodology. Microchim Acta 180:1073–1084

    CAS  Article  Google Scholar 

  128. 128.

    Sohrabi MR, Matbouie Z, Asgharinezhad AA, Dehghani A (2013) Solid phase extraction of Cd(II) and Pb(II) using a magnetic metal-organic framework, and their determination by FAAS. Microchim Acta 180:589–597

    CAS  Article  Google Scholar 

  129. 129.

    Babazadeh M, Hosseinzadeh-Khanmiri R, Abolhasani J, Ghorbani-Kalhor E, Hassanpour A (2015) Solid phase extraction of heavy metal ions from agricultural samples with the aid of a novel functionalized magnetic metal-organic framework. RSC Adv 5:19884–19892

    CAS  Article  Google Scholar 

  130. 130.

    Wang Y, Chen H, Tang J, Ye G, Ge H, Hu X (2015) Preparation of magnetic metal organic frameworks adsorbent modified with mercapto groups for the extraction and analysis of lead in food samples by flame atomic absorption spectrometry. Food Chem 181:191–197

    CAS  Article  Google Scholar 

  131. 131.

    Hassanpour A, Hosseinzadeh-Khanmiri R, Babazadeh M, Abolhasani J, Ghorbani-Kalhor E (2015) Determination of heavy metal ions in vegetable samples using a magnetic metal–organic framework nanocomposite sorbent. Food Addit Contam Part A 32:725–736

    CAS  Google Scholar 

  132. 132.

    Moradi SE, Haji Shabani AM, Dadfarnia S, Emami S (2016) Sulfonated metal organic framework loaded on iron oxide nanoparticles as a new sorbent for the magnetic solid phase extraction of cadmium from environmental water samples. Anal Methods 8:6337–6346

    CAS  Article  Google Scholar 

  133. 133.

    Ghorbani-Kalhor E (2016) A metal-organic framework nanocomposite made from functionalized magnetite nanoparticles and HKUST-1 (MOF-199) for preconcentration of Cd(II), Pb(II), and Ni(II). Microchimica Acta 183:2639–2647

    CAS  Article  Google Scholar 

  134. 134.

    Tadjarodi A, Abbaszadeh A (2016) A magnetic nanocomposite prepared from chelator-modified magnetite (Fe3O4) and HKUST-1 (MOF-199) for separation and preconcentration of mercury(II). Microchim Acta 183:1391–1399

    CAS  Article  Google Scholar 

  135. 135.

    Safari M, Yamini Y, Masoomi MY, Morsali A, Mani-Varnosfaderani A (2017) Magnetic metal-organic frameworks for the extraction of trace amounts of heavy metal ions prior to their determination by ICP-AES. Microchim Acta 184:1555–1564

    CAS  Article  Google Scholar 

  136. 136.

    Ho TD, Zhang C, Hantao LW, Anderson JL (2013) Ionic liquids in analytical chemistry: fundamentals, advances, and perspectives. Anal Chem 86:262–285

    Article  CAS  Google Scholar 

  137. 137.

    Santos E, Albo J, Irabien A (2014) Magnetic ionic liquids: synthesis, properties and applications. Rsc Adv 4:40008–40018

    CAS  Article  Google Scholar 

  138. 138.

    Fumes BH, Silva MR, Andrade FN, Nazario CED, Lanças FM (2015) Recent advances and future trends in new materials for sample preparation. Trends Anal Chem 71:9–25

    CAS  Article  Google Scholar 

  139. 139.

    Mehdinia A, Shegefti S, Shemirani F (2015) A novel nanomagnetic task specific ionic liquid as a selective sorbent for the trace determination of cadmium in water and fruit samples. Talanta 144:1266–1272

    CAS  Article  Google Scholar 

  140. 140.

    Chen S, Qin X, Gu W, Zhu X (2016) Speciation analysis of Mn(II)/Mn(VII) using Fe3O4@ionic liquids-β-cyclodextrin polymer magnetic solid phase extraction coupled with ICP-OES. Talanta 161:325–332

    CAS  Article  Google Scholar 

  141. 141.

    Yilmaz E, Soylak M (2013) Ionic liquid-linked dual magnetic microextraction of lead (II) from environmental samples prior to its micro-sampling flame atomic absorption spectrometric determination. Talanta 116:882–886

    CAS  Article  Google Scholar 

  142. 142.

    Khan S, Kazi TG, Soylak M (2014) Rapid ionic liquid-based ultrasound assisted dual magnetic microextraction to preconcentrate and separate cadmium-4-(2-thiazolylazo)-resorcinol complex from environmental and biological samples. Spectrochim Acta A 123:194–199

    CAS  Article  Google Scholar 

  143. 143.

    Shirani M, Semnani A, Habibollahi S, Haddadi H (2015) Ultrasound-assisted, ionic liquid-linked, dual-magnetic multiwall carbon nanotube microextraction combined with electrothermal atomic absorption spectrometry for simultaneous determination of cadmium and arsenic in food samples. J Anal At Spectrom 30:1057–1063

    CAS  Article  Google Scholar 

  144. 144.

    Farahani MD, Shemirani F, Ramandi NF, Gharehbaghi M (2015) Ionic liquid as a ferrofluid carrier for dispersive solid phase extraction of copper from food samples. Food Anal Methods 8:1979–1989

    Article  Google Scholar 

  145. 145.

    Lotfi Z, Mousavi HZ, Sajjadi SM (2016) Covalently bonded double-charged ionic liquid on magnetic graphene oxide as a novel, efficient, magnetically separable and reusable sorbent for extraction of heavy metals from medicine capsules. RSC Adv 6:90360–90370

    CAS  Article  Google Scholar 

  146. 146.

    Karimi M, Shabani AMH, Dadfarnia S (2016) Deep eutectic solvent-mediated extraction for ligand-less preconcentration of lead and cadmium from environmental samples using magnetic nanoparticles. Microchim Acta 183:563–571

    CAS  Article  Google Scholar 

  147. 147.

    Pacheco PH, Gil RA, Cerutti SE, Smichowski P, Martinez LD (2011) Biosorption: a new rise for elemental solid phase extraction methods. Talanta 85:2290–2300

    CAS  Article  Google Scholar 

  148. 148.

    Tong J, Chen L (2013) Review: Preparation and Application of Magnetic Chitosan Derivatives in Separation Processes. Anal Lett 46:2635–2656

    CAS  Article  Google Scholar 

  149. 149.

    Liu L, Xiao L, Zhu H, Shi X (2012) Preparation of magnetic and fluorescent bifunctional chitosan nanoparticles for optical determination of copper ion. Microchim Acta 178:413–419

    CAS  Article  Google Scholar 

  150. 150.

    Cui C, He M, Chen B, Hu B (2014) Chitosan modified magnetic nanoparticles based solid phase extraction combined with ICP-OES for the speciation of Cr(iii) and Cr(vi). Anal Methods 6:8577–8583

    CAS  Article  Google Scholar 

  151. 151.

    Shi D, Yan F, Zhou X, Zheng T, Shi Y, Fu W, Chen L (2016) Preconcentration and fluorometric detection of mercury ions using magnetic core-shell chitosan microspheres modified with a rhodamine spirolactam. Microchim Acta 183:319–327

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to appreciate the Semnan University Research Council for the financial support of this research work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Maryam Rajabi.

Ethics declarations

The author(s) declare that they have no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hemmati, M., Rajabi, M. & Asghari, A. Magnetic nanoparticle based solid-phase extraction of heavy metal ions: A review on recent advances. Microchim Acta 185, 160 (2018). https://doi.org/10.1007/s00604-018-2670-4

Download citation

Keywords

  • Heavy metal ions
  • Ameliorated magnetic solid phase extraction
  • Magnetized inorganic/organic nanomaterials
  • Magnetized metal organic framework
  • Magnetized ionic liquid
  • Magnetized Chitosan