Skip to main content
Log in

A novel magnetic metal organic framework nanocomposite for extraction and preconcentration of heavy metal ions, and its optimization via experimental design methodology

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We describe a novel magnetic metal-organic framework (MOF) prepared from dithizone-modified Fe3O4 nanoparticles and a copper-(benzene-1,3,5-tricarboxylate) MOF and its use in the preconcentration of Cd(II), Pb(II), Ni(II), and Zn(II) ions. The parameters affecting preconcentration were optimized by a Box-Behnken design through response surface methodology. Three variables (extraction time, amount of the magnetic sorbent, and pH value) were selected as the main factors affecting adsorption, while four variables (type, volume and concentration of the eluent; desorption time) were selected for desorption in the optimization study. Following preconcentration and elution, the ions were quantified by FAAS. The limits of detection are 0.12, 0.39, 0.98, and 1.2 ng mL−1 for Cd(II), Zn(II), Ni(II), and Pb(II) ions, respectively. The relative standard deviations were <4.5 % for five separate batch determinations of 50 ng mL−1 of Cd(II), Zn(II), Ni(II), and Pb(II) ions. The adsorption capacities (in mg g−1) of this new MOF are 188 for Cd(II), 104 for Pb(II), 98 Ni(II), and 206 for Zn(II). The magnetic MOF nanocomposite has a higher capacity than the Fe3O4/dithizone conjugate. This magnetic MOF nanocomposite was successfully applied to the rapid extraction of trace quantities of heavy metal ions in fish, sediment, soil, and water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Farooq U, Khan MA, Athar M, Kozinski JA (2011) Effect of modification of environmentally friendly biosorbent wheat (Triticumaestivum) on the biosorptive removal of cadmium(II) ions from aqueous solution. Chem Engin J 171:400

    Article  CAS  Google Scholar 

  2. Bianchin JN, Martendal E, Mior R, Alves VN, Araújo CST, Coelho NMM, Carasek E (2009) Development of a flow system for the determination of cadmium in fuel alcohol using vermicompost as biosorbent and flame atomic absorption spectrometry. Talanta 78:333

    Article  CAS  Google Scholar 

  3. Kalariya NM, Nair B, Kalariya DK, Wills NK, Kuijk FJGMV (2010) Cadmium-induced induction of cell death in human lens epithelial cells: implications to smoking associated cataractogenesis. Toxicol Let 198:56

    Article  CAS  Google Scholar 

  4. Guo W, Hu S, Xiao Y, Zhang H, Xie X (2010) Direct determination of trace cadmium in environmental samples by dynamic reaction cell inductively coupled plasma mass spectrometry. Chemospher 81:1463

    Article  CAS  Google Scholar 

  5. Gama EM, Lima AS, Lemos VA (2006) Preconcentration system for cadmium and lead determination in environmental samples using polyurethane foam/Me-BTANC. J Hazard Mater 757:762

    Google Scholar 

  6. Korn MGA, Morte ESB, dos Santos DCMB, Castro JT, Barbosa JTP, Teixeira AP, Fernandes AP, Welz B, dos Santos WPC, dos Santos EBGN, Korn M (2010) Slurry sampling-an analytical strategy for the determination of metals and metalloids by spectroanalytical techniques. Appl Spectrosc Rev 45:44

    Article  Google Scholar 

  7. Kristiansen J, Christensen JM, Henriksen T, Nielsen NH, Menne T (2000) Determination of nickel in fingernails and forearm skin (stratum corneum). Anal Chim Acta 403:265

    Article  CAS  Google Scholar 

  8. Scherz H, Kirchhoff E (2006) Trace elements in foods: zinc contents of raw foods—A comparison of data originating from different geographical regions of the world. J Food Comp Anal 19:420

    Article  CAS  Google Scholar 

  9. Bohrer D, Cícero do Nascimento P, Guterres M, Trevisan M, Seibert E (1999) Electrothermal atomic absorption spectrometric determination of lead, cadmium, copper and zinc in high-salt content samples after simultaneous separation on polyethylene powder impregnated with 1-(2-pyridylazo)-2-naphthol: application to the analysis of hemodialysis fluids. Analyst 124:1345

    Article  CAS  Google Scholar 

  10. Sung Y-H, Huang S-D (2003) On-line preconcentration system coupled to electrothermal atomic absorption spectrometry for the simultaneous determination of bismuth, cadmium, and lead in urine. Anal Chim Acta 495:165

    Article  CAS  Google Scholar 

  11. Silva EL, dos Santos RP, Giné MF (2009) Simultaneous preconcentration of copper, zinc, cadmium, and nickel in water samples by cloud point extraction using 4-(2-pyridylazo)-resorcinol and their determination by inductively coupled plasma optic emission spectrometry. J Hazard Mater 171:1133

    Article  CAS  Google Scholar 

  12. Duran C, Senturk HB, Elci L, Soylak M, Tufekci M (2009) Simultaneous preconcentration of Co(II), Ni(II), Cu(II), and Cd(II) from environmental samples on Amberlite XAD-2000 column and determination by FAAS. J Hazard Mater 162:292

    Article  CAS  Google Scholar 

  13. Yin J, Jiang Z, Chang G, Hu B (2005) Simultaneous on-line preconcentration and determination of trace metals in environmental samples by flow injection combined with inductively coupled plasma mass spectrometry using a nanometer-sized alumina packed micro-column. Anal Chim Acta 540:333

    Article  CAS  Google Scholar 

  14. Zawisza B, Sitko R (2007) Determination of Te, Bi, Ni, Sb and Au by X-ray fluorescence spectrometry following electro enrichment on a copper cathode. Spectrochim Acta B Atomic Spect 62:1147

    Article  Google Scholar 

  15. Bruno P, Caselli M, Gennaro G, Ielpo P, Ladisa T, Placentino CM (2006) Ion chromatography determination of heavy metals in airborne particulate with preconcentration and large volume direct injection. Chromatographia 64:537

    Article  CAS  Google Scholar 

  16. Abe S, Fuji K, Sono T (1994) Liquid-liquid extraction of manganese(II), copper(II) and zinc(II) with acyclic and macrocyclic Schiff bases containing bisphenol A subunits. Anal Chim Acta 293:325

    Article  CAS  Google Scholar 

  17. Chen J, Teo KC (2001) Determination of cadmium, copper, lead and zinc in water samples by flame atomic absorption spectrometry after cloud point extraction. Anal Chim Acta 450:215

    Article  CAS  Google Scholar 

  18. Matlock MM, Howerton BS, Atwood DA (2002) Chemical precipitation of heavy metals from acid mine drainage. Water Res 36:4757

    Article  CAS  Google Scholar 

  19. Yebra-Biurrun MC, Bermejo-Barrera A, Bermejo-Barrera MP, Barciela-Alonso MC (1995) Atomic absorption spectrometry determination of trace metals in natural waters by flame atomic absorption spectrometry following on-line ion-exchange preconcentration. Anal Chim Acta 303:341

    Article  CAS  Google Scholar 

  20. Faraji M, Yamini Y, Saleh A, Rezaee M, Ghambarian M, Hassani R (2010) A nanoparticle based solid-phase extraction procedure followed by flow injection inductively coupled plasma-optical emission spectrometry to determine some heavy metal ions in water samples. Anal Chim Acta 659:172

    Article  CAS  Google Scholar 

  21. Duran A, Tuzen M, Soylak M (2009) Preconcentration of some trace elements via using multiwalled carbon nanotubes as solid phase extraction adsorbent. J Hazard Mater 169:466

    Article  CAS  Google Scholar 

  22. Tuzen M, Soylak M, Elci L (2005) Multi-element pre-concentration of heavy metal ions by solid phase extraction on Chromosorb 108. Anal Chim Acta 548:101

    Article  CAS  Google Scholar 

  23. Tuzen M, Saygi KO, Soylak M (2008) Novel solid phase extraction procedure for gold(III) on Dowex M 4195 prior to its flame atomic absorption spectrometric determination. J Hazard Mater 156:591

    Article  CAS  Google Scholar 

  24. Alothman AA, Habila M, Yilmaz E, Soylak M (2012) Solid phase extraction of Cd(II), Pb(II), Zn(II) and Ni(II) from food samples using multiwalled carbon nanotubes impregnated with 4-(2-thiazolylazo) resorcinol. Microchim Acta 177:397

    Article  CAS  Google Scholar 

  25. Tuzen M, Saygi KO, Usta C, Soylak M (2008) Pseudomonas aeruginosa immobilized multiwalled carbon nanotubes as biosorbent for heavy metal ions. Bioresour Technol 99:1563

    Article  CAS  Google Scholar 

  26. Tuzen M, Saygi KO, Soylak M (2008) Solid phase extraction of heavy metal ions in environmental samples on multiwalled carbon nanotubes. J Hazard Mater 152:632

    Article  CAS  Google Scholar 

  27. Suleiman JS, Hu B, Peng H, Huang C (2009) Separation/preconcentration of trace amounts of Cr, Cu and Pb in environmental samples by magnetic solid-phase extraction with Bismuthiol-II immobilized magnetic nanoparticles and their determination by ICP-OES. Talanta 77:1579

    Article  CAS  Google Scholar 

  28. Parham H, Pourreza N, Rahbar N (2009) Solid phase extraction of lead and cadmium using solid sulfur as a new metal extractor prior to determination by flame atomic absorption spectrometry. J Hazard Mater 163:588

    Article  CAS  Google Scholar 

  29. Faraji M, Yamini Y, Shariati S (2009) Application of cotton as a solid phase extraction sorbent for on-line preconcentration of copper in water samples prior to inductively coupled plasma optical emission spectrometry determination. J Hazard Mater 166:1383

    Article  CAS  Google Scholar 

  30. Ebrahimzadeh H, Asgharinezhad AA, Tavassoli N, Sadeghi O, Amini MM, Kamarei F (2012) Separation and spectrophotometric determination of very low levels of Cr(VI) in water samples by novel pyridine-functionalized mesoporous silica. Intern J Environ Anal Chem 92:509

    Article  CAS  Google Scholar 

  31. Chae HK, Siberio-Perez DY, Kim J, Go Y, Eddaoudi M, Matzger AJ, O’Keeffe M, Yaghi OM (2004) A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 427:523

    Article  CAS  Google Scholar 

  32. Shekhah O, Liu J, Fischer RA, Wöll C (2011) MOF thin films: existing and future applications. Chem Soc Rev 40:1081

    Article  CAS  Google Scholar 

  33. Bagheri A, Taghizadeh M, Behbahani M, Asgharinezhad AA, Salarian M, Dehghani A, Ebrahimzadeh H, Amini MM (2012) Synthesis and characterization of magnetic metal-organicframework (MOF) as a novel sorbent, and its optimization by experimental design methodology for determination of palladium in environmental samples. Talanta 99:132

    Article  CAS  Google Scholar 

  34. Chong ASM, Zhao XS (2003) Functionalization of SBA-15 with APTES and characterization of functionalized materials. J Phys Chem B 107:12650

    Article  CAS  Google Scholar 

  35. Hartmann M, Kunz S, Himsl D, Tangermann O, Ernst S, Wagener A (2008) Adsorptive separation of Isobutene and Isobutane on Cu3(BTC)2. Langmuir 24:8634

    Article  CAS  Google Scholar 

  36. Yilmaz AB (2003) Levels of heavy metals (Fe, Cu, Ni, Cr, Pb, and Zn) in tissue of Mugilcephalus and Trachurusmediterraneus from Iskenderun Bay, Turkey. Environ Res 92:277

    Article  CAS  Google Scholar 

  37. Box GEP, Draper NR (1987) Empirical model building and response surfaces. John Wiley and Sons, New York

    Google Scholar 

  38. Kamarei F, Ebrahimzadeh H, Yamini Y (2010) Optimization of solvent bar microextraction combined with gas chromatography for the analysis of aliphatic amines in water samples. J Hazard Mater 178:747

    Article  CAS  Google Scholar 

  39. StatGraphics Plus 5.1 for Windows, Statistical Graphic Crop., online manuals, 2001.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Taghizadeh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 189 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taghizadeh, M., Asgharinezhad, A.A., Pooladi, M. et al. A novel magnetic metal organic framework nanocomposite for extraction and preconcentration of heavy metal ions, and its optimization via experimental design methodology. Microchim Acta 180, 1073–1084 (2013). https://doi.org/10.1007/s00604-013-1010-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-013-1010-y

Keywords

Navigation