Skip to main content

Advertisement

Log in

N-Doped graphene quantum dot@mesoporous silica nanoparticles modified with hyaluronic acid for fluorescent imaging of tumor cells and drug delivery

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe new bifunctional mesoporous silica nanoparticles (NPs) for specific targeting of tumor cells and for intracellular delivery of the cancer drug doxorubicin (DOX). Mesoporous silica nanoparticles (MSNPs) were coated with blue fluorescent N-graphene quantum dots, loaded with the drug DOX, and finally coated with hyaluronic acid (HA). Cellular uptake of the NPs with an architecture of the type HA-DOX-GQD@MSNPs enabled imaging of human cervical carcinoma (HeLa) cells via fluorescence microscopy. The cytotoxicity of the nanoparticles on HeLa cells was also assessed. The results suggest that the NPs are higher cytotoxicity effect and exert in living cell imaging ability. Compared to the majority of other drug nanocarrier systems, the one described here enables simultaneous DOX release and fluorescent monitoring.

Schematic of the bifunctional mesoporous silica nanoparticles were obtained via the Stöber method, along with the doxorubicin loaded and the hyaluronic acid capped. The sensor shows good specificity and significant cytotoxicity effect on Hela cells. (TEOS: tetraethyl orthosilicate; GQDs: graphene quantum dots; DOX: doxorubicin; HA: Hyaluronic acid).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hocinea O, Gary-Bobod M, Breveta D, Maynadierd M, Fontaneld S, Raehma L, Richetera S, Loockh B, Couleaudj P, Frochotj C, Charnayb C, Derrienb G, Smaïhic M, Sahmounel A, Morèrek A, Maillardh P, Garciad M, Duranda JO (2010) Silicalites and mesoporous silica nanoparticles for photodynamic therapy. Int J Pharm 402:221–230

    Article  Google Scholar 

  2. Hu JJ, Lei Q, Peng MY, Zheng DW, Chen YX, Zhang XZ (2017) A positive feedback strategy for enhanced chemotherapy based on ROS-triggered self-accelerating drug release nanosystem. Biomaterials 128:136–146

    Article  CAS  Google Scholar 

  3. Li XY, Pan LM, Shi JL (2015) Nuclear-targeting MSNs-based drug delivery system: global gene expression analysis on the MDR-overcoming mechanisms. Adv Healthcare Mater 4:2641–2648

    Article  CAS  Google Scholar 

  4. Liu YY, Miyoshi H, Nakamurac M (2007) Novel drug delivery system of hollow mesoporous silica nanocapsules with thin shells: preparation and fluorescein isothiocyanate (FITC) release kinetics. Colloids Surf B: Biointerfaces 58:180–187

    Article  CAS  Google Scholar 

  5. Mekaru H, Lu J, Tamanoi F (2015) Development of mesoporous silica-based nanoparticles with controlled release capability for cancer therapy. Adv Drug Deliv Rev 95:40–49

    Article  CAS  Google Scholar 

  6. Paulo CSO, Neves RPD, Ferreira LS (2011) Nanoparticles for intracellular-targeted drug delivery. Nanotechnology 22:494002–494012

    Article  Google Scholar 

  7. Shahabi S, Döscher S, Bollhorst T, Treccani L, Maas M, Dringen R, Rezwan K (2015) Enhancing cellular uptake and doxorubicin delivery of mesoporous silica nanoparticles via surface functionalization: effects of serum. ACS Appl Mater Interfaces 7:26880–26891

    Article  CAS  Google Scholar 

  8. Xu XB, Lü SY, Gao CM, Wang XG, Bai X, Gao NN, Liu MZ (2015) Facile preparation of pH-sensitive and self-fluorescent mesoporous silica nanoparticles modified with PAMAM dendrimers for label-free imaging and drug delivery. Chem Eng J 266:171–178

    Article  CAS  Google Scholar 

  9. Lin VSY, Slowing I, Trewyn BG (2006) Effect of surface functionalization of MCM-41-type mesoporous silica nanoparticles on the endocytosis by human cancer cells. J Am Chem Soc 128:14792–14793

    Article  Google Scholar 

  10. Rosenholm JM, Meinander A, Peuhu E, Niemi R, Eriksson JE, Sahlgren C, Linde’n M (2009) Targeting of porous hybrid silica nanoparticles to cancer cells. ACS Nano 3:197–206

    Article  CAS  Google Scholar 

  11. Rosenholm JM, Peuhu E, Eriksson JE, Sahlgren C, Linde’n M (2009) Targeted intracellular delivery of hydrophobic agents using mesoporous hybrid silica nanoparticles as carrier systems. Nano Lett 9:3308–3311

    Article  CAS  Google Scholar 

  12. Tsai CP, Chen CY, Hung Y, Chang FH, Mou CY (2009) Monoclonal antibody-functionalized mesoporous silica nanoparticles (MSN) for selective targeting breast cancer cells. J Mater Chem 19:5737–5743

    Article  CAS  Google Scholar 

  13. Wang LS, Wu LC, Lu SY, Chang LL, Teng IT, Yang CM, Ho JA (2010) Biofunctionalized phospholipid-capped mesoporous silica nanoshuttles for targeted drug delivery: improved water suspensibility and decreased nonspecific protein binding. ACS Nano 4:4371–4379

    Article  CAS  Google Scholar 

  14. Huang HD, Liao L, Xu X, Zou MJ, Liu F, Li N (2013) The electron-transfer based interaction between transition metal ions and photoluminescent graphene quantum dots (GQDs): a platform for metal ion sensing. Talanta 117:152–157

    Article  CAS  Google Scholar 

  15. Shi JY, Chan CY, Pang Y, Ye WW, Tian F, Lyn J, Zhang Y, Yang M (2015) A fluorescence resonance energy transfer (FRET) biosensor based on graphene quantum dots (GQDs) and gold nanoparticles (AuNPs) for the detection of mecA gene sequence of Staphylococcusaureus. Biosens Bioelectron 67:595–600

    Article  CAS  Google Scholar 

  16. Biswal BP, Shinde DB, Pillai VK, Banerjee R (2013) Stabilization of graphene quantum dots (GQDs) by encapsulation inside zeolitic imidazolate framework nanocrystals for photoluminescence tuning. Nano 5:10556–10561

    CAS  Google Scholar 

  17. Surgawanshi A, Biswal M, Mhamane D, Gokhale R, Patil S, Guin D, Ogale S (2014) Large scale synthesis of graphene quantum dots (GQDs) from waste biomass and their use as an efficient and selective photoluminescence on–off– on probe for Ag+ ions. Nano 6:11664–11670

    Google Scholar 

  18. Li X, Zhao Z, Pan C (2016) Ionic liquid-assisted electrochemical exfoliation of carbon dots of different size for fluorescent imaging of bacteria by tuning the water fraction in electrolyte. Microchim Acta 183:2525–2532

    Article  CAS  Google Scholar 

  19. Xiao Q, Liang Y, Zhu F, Lu S, Huang S (2017) Microwave-assisted one-pot synthesis of highly luminescent N-doped carbon dots for cellular imaging and multi-ion probing. Microchim Acta 184:2429–2438

    Article  CAS  Google Scholar 

  20. Li J, Jiao Y, Feng L, Zhong Y, Zuo G, Xie A, Dong W (2017) Highly N,P-doped carbon dots: rational design, photoluminescence and cellular imaging. Microchim Acta 184:2933–2940

    Article  CAS  Google Scholar 

  21. Parvin N, Mandal TK (2017) Dually emissive P,N-co-doped carbon dots for fluorescent and photoacoustic tissue imaging in living mice. Microchim Acta 184:1117–1125

    Article  CAS  Google Scholar 

  22. Li H, Shao FQ, Zou SY, Yang QJ, Huang H, Feng JJ, Wang AJ (2016) Microwave-assisted synthesis of N,P-doped carbon dots for fluorescent cell imaging. Microchim Acta 183:821–826

    Article  CAS  Google Scholar 

  23. Ruiz V, Fernández I, Carrasco P, Cabanero G, Grande HJ, Herrán J (2015) Graphene quantum dots as a novel sensing material for low-cost resistive and fast-response humidity sensors. Sensors Actuators B Chem 218:73–77

    Article  CAS  Google Scholar 

  24. Zheng XT, Ananthanarayanan A, Luo KQ, Chen P (2015) Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Mater Rev 14:1620–1636

    Google Scholar 

  25. Chen T, Yu H, Yang N, Wang M, Ding C, Fu J (2014) Graphene quantum dot-capped mesoporous silica nanoparticles through an acid-cleavable acetal bond for intracellular drug delivery and imaging. J Mater Chem B 2:4979–4982

    Article  CAS  Google Scholar 

  26. Yuan H, Yu J, Feng SL, Gong YJ (2016) Highly photoluminescent pH-independent nitrogen-doped carbon dots for sensitive and selective sensing of p-nitrophenol. RSC Adv 6:15192–15200

    Article  CAS  Google Scholar 

  27. Li Y, Zhao Y, Cheng HH, Hu Y, Shi GQ, Dai LM, Qu LT (2012) Nitrogen-doped graphene quantum dots with oxygen-rich functional groups. J Am Chem Soc 134:15–18

    Article  CAS  Google Scholar 

  28. Chen SF, Song Y, Li Y, Liu YL, Su XG, Ma Q (2015) A facile photoluminescence modulated nanosensor based on nitrogen-doped grapheme quantum dots for sulfite detection. New J Chem 39:8114–8120

    Article  CAS  Google Scholar 

  29. Tran VT, Trung NB, Kim HR, Chung JS, Choi WM (2014) One-pot synthesis of N-doped grapheme quantum dots as a fluorescent sensing platform for Fe3+ ions detection. Sensors Actuators B Chem 202:568–573

    Article  Google Scholar 

  30. Li Z, Ni YN, Kokot S (2015) A new fluorescent nitrogen-doped carbon dot system modified by the fluorophore-labeledss DNA for the analysis of 6-mercaptopurine and Hg (II). Biosens Bioelectron 74:91–97

    Article  CAS  Google Scholar 

  31. Ju J, Zhang RZ, He SJ, Chen W (2014) Nitrogen-doped graphene quantum dots-based fluorescent probe for the sensitive turn-on detection of glutathione and its cellular imaging. RSC Adv 4:52583–52589

    Article  CAS  Google Scholar 

  32. Park JH, Cho HJ, Yoon HY, Yoon IS, Ko SH, Shim JS (2014) Hyaluronic acid derivative-coated nanohybrid liposomes for cancer imaging and drug delivery. J Control Release 174:98–108

    Article  CAS  Google Scholar 

  33. Zhao QF, Geng HJ, Wang Y, Gao YK, Huang JH, Wang Y, Zhang JH, Wang SL (2014) Hyaluronic acid oligosaccharide modified redox-responsive mesoporous silica nanoparticles for targeted drug delivery. ACS Appl Mater Interfaces 6:20290–20299

    Article  CAS  Google Scholar 

  34. Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69

    Article  Google Scholar 

  35. Li T, Chen XF, Liu YJ, Fan LL, Lin LQ, Xu Y, Chen SJ, Shao JW (2017) pH-sensitive mesoporous silica nanoparticles anticancer prodrugs for sustained release of ursolic acid and the enhanced anti-cancer efficacy for hepatocellular carcinoma cancer. Eur J Pharm Sci 96:456–463

    Article  CAS  Google Scholar 

  36. Lai JP, Shah BP, Garfunkel E, Lee K-B (2014) Versatile FRET-based mesoporous silica nanoparticles for RealTime monitoring of drug release. ACS Nano 7:2741–2750

    Article  Google Scholar 

  37. Tang J, Kong B, Wu H, Xu M, Wang YC, Wang YL, Zhao DY, Zheng CF (2013) Carbon Nanodots featuring efficient FRET for real-time monitoring of drug delivery and two-photon imaging. Adv Mater 25:6569–6574

    Article  CAS  Google Scholar 

  38. Rajesh BS, Ammasi P (2003) Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations. J Cell Biol 160:629–633

    Article  Google Scholar 

  39. Chen H, Wang ZY, Zong SF, Chen P, Zhu D, Wu L, Cui YP (2015) A graphene quantum dot-based FRET system for nuclear-targeted and real-time monitoring of drug delivery. Nano 7:15477–15486

    CAS  Google Scholar 

  40. Liu X, Wei S, Diao Q, Ma P, Xu L, Xu S, Wang X (2017) Hydrothermal synthesis of N-doped carbon dots for selective fluorescent sensing and cellular imaging of cobalt(II). Microchim Acta 184:3825–3831

    Article  CAS  Google Scholar 

  41. Xia J, Zhuang YT, Yu YL, Wang JH (2017) Highly fluorescent carbon polymer dots prepared at room temperature, and their application as a fluorescent probe for determination and intracellular imaging of ferric ion. Microchim Acta 184:1109–1116

    Article  CAS  Google Scholar 

  42. Yang M, Kong W, Li H, Liu J, Huang H, Liu Y, Kang Z (2015) Fluorescent carbon dots for sensitive determination and intracellular imaging of zinc(II) ion. Microchim Acta 182:2443–2450

    Article  CAS  Google Scholar 

  43. Duan HW, Nie SM (2007) Cell-penetrating quantum dots based on multivalent and endosome-disrupting surface coatings. J Am Chem Soc 129:3333–3338

    Article  CAS  Google Scholar 

  44. Yao XX, Niu XX, Ma KX, Huang P, Grothe J, Kaskel S, Zhu YF (2017) Graphene quantum dot-capped magnetic mesoporous silica nanoparticles as a multifunctional platform for controlled drug delivery, magnetic hyperthermia, and photothermal therapy. Adv Sci News 13:1602225–1602235

    Google Scholar 

  45. Hao WJ, Shen YX, Liu DY, Shang YZ, Zhang JQ, SH X, Liu HL (2017) Dual-PH-sensitivity and tumour targeting core-shell particles for intracellular drug delivery. RSC Adv 7:851–860

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 21075050, No.21005029).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dahai Yu or Qiang Ma.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 652 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gui, W., Zhang, J., Chen, X. et al. N-Doped graphene quantum dot@mesoporous silica nanoparticles modified with hyaluronic acid for fluorescent imaging of tumor cells and drug delivery. Microchim Acta 185, 66 (2018). https://doi.org/10.1007/s00604-017-2598-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-017-2598-0

Keywords

Navigation