Skip to main content
Log in

Redox-responsive mesoporous silica nanoparticles based on fluorescence resonance energy transfer for anti-cancer drug targeting and real-time monitoring

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Redox-responsive colloidal mesoporous silica nanoparticles (CMS) drug delivery systems based on fluorescence resonance energy transfer (FRET) was successfully designed for targeting and real-time monitoring in potential cancer therapy. FRET-CMS indicated the typical type IV isotherm with uniform distribution and wormhole arrangement of mesopores. In vitro release studies indicate the redox-sensitive drug release behaviors. Furthermore, the release of entrapped drugs in real time is monitored by the changed FRET signals of FRET-CMS, which is effectively controlled due to the eliminating FRET with the dissociation of FRET donor–acceptor pair. Fluorescent images of cellular uptake and cell viability test revealed that FRET-CMS enhanced significantly 6-MP accumulation in Hela cells with CD44 receptor over-expressed compared to MCF-7 cells due to the existence of hyaluronic acid and subsequently induced selective cytotoxicity to Hela cells. The obtained results illustrate that FRET-CMS may be a promising nanocarrier for drug delivery systems in cancer therapy.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Q.F. Zhao, H.J. Geng, Y. Wang, Y.K. Gao, J.H. Huang, Y. Wang, J.H. Zhang, S.L. Wang, Hyaluronic acid oligosaccharide modified redox-responsive mesoporous silica nanoparticles for targeted drug delivery. ACS Appl. Mater. Interface 6, 20290–20299 (2014)

    Article  CAS  Google Scholar 

  2. H. Kim, S. Kim, C. Park, H. Lee, H.J. Park, C. Kim, Glutathione-induced intracellular release of guests from mesoporous silica nanocontainers with cyclodextrin gatekeepers. Adv. Mater. 22, 4280–4283 (2010)

    Article  CAS  Google Scholar 

  3. Y. Chen, W.P. Lu, Y.C. Guo, Y. Zhu, Y.P. Song, Chitosan-gated fluorescent mesoporous silica nanocarriers for the real-time monitoring of drug release. Langmuir 36, 6749–6756 (2020)

    Article  CAS  Google Scholar 

  4. J.M. Li, C.W.T. Leung, D.S.H. Wong, J.B. Xu, R. Li, Y.Y. Zhao, C.Y.Y. Yung, E.G. Zhao, B.Z. Tang, L.M. Bian, Photocontrolled SiRNA delivery and biomarker-triggered luminogens of aggregation-induced emission by up-conversion NaYF4:Yb3+Tm3+@SiO2 nanoparticles for inducing and monitoring stem-cell differentiation. ACS Appl. Mater. Interfaces 11, 22074–22084 (2019)

    Article  CAS  Google Scholar 

  5. Z. Li, J.C. Barnes, A. Bosoy, J.F. Stoddart, J.I. Zink, Mesoporous silica nanoparticles in biomedical applications. Chem. Soc. Rev. 41, 2590–2605 (2012)

    Article  CAS  Google Scholar 

  6. X.Y. Zhang, X.Q. Zhang, S.Q. Wang, M.Y. Liu, Y. Zhang, L. Tao, Y. Wei, Facile incorporation of aggregation-induced emission materials into mesoporous silica nanoparticles for intracellular imaging and cancer therapy. ACS Appl. Mater. Interface 5, 1943–1947 (2013)

    Article  CAS  Google Scholar 

  7. M. Liong, J. Lu, M. Kovochich, T. Xia, S.G. Ruehm, A.E. Nel, F. Tamanoi, J.I. Zink, Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2, 889–896 (2008)

    Article  CAS  Google Scholar 

  8. J.E. Lee, N. Lee, T. Kim, J. Kim, T. Hyeon, Multifunctional mesoporous silica nanocomposite nanoparticles for theranostic applications. Acc. Chem. Res. 44, 893–902 (2011)

    Article  CAS  Google Scholar 

  9. P. Singh, S. Srivastava, S.K. Singh, Nanosilica: recent progress in synthesis, functionalization, biocompatibility, and biomedical applications. ACS Biomater. Sci. Eng. 5, 4882–4898 (2019)

    Article  CAS  Google Scholar 

  10. S. Jafari, H. Derakhshankhah, L. Alaei, A. Fattahi, B.S. Varnamkhasti, A.A. Saboury, Mesoporous silica nanoparticles for therapeutic/diagnostic applications. Biomed. Pharmacother. 109, 1100–1111 (2019)

    Article  CAS  Google Scholar 

  11. Y. Zhang, Q. Yue, M.M. Zagho, J.J. Zhang, A.A. Elzatahry, Y.J. Jiang, Y.H. Deng, Core-shell magnetic mesoporous silica microspheres with large mesopores for enzyme immobilization in biocatalysis. ACS Appl. Mater. Interface 11, 10356–10363 (2019)

    Article  CAS  Google Scholar 

  12. T. Zhang, B.T. Huang, A.A. Elzatahry, A. Alghamdi, Q. Yue, Y.H. Deng, Synthesis of podlike magnetic mesoporous silica nanochains for use as enzyme support and nanostirrer in biocatalysis. ACS Appl. Mater. Interface 12, 17913–17920 (2020)

    Google Scholar 

  13. A.J. Salinas, P. Esbrit, M. Vallet-Regi, A tissue engineering approach based on the use of bioceramics for bone repair. Biomater Sci-Uk. 1, 40–51 (2013)

    Article  CAS  Google Scholar 

  14. N. Ehlert, P.P. Mueller, M. Stieve, T. Lenarz, P.J.C.S.R. Behrens, Nanoporous silica films as novel biomaterial: applications in the middle ear. Chem. Soc. Rev. 42, 3847–3861 (2013)

    Article  CAS  Google Scholar 

  15. P.P. Yang, S.L. Gai, J. Lin, Functionalized mesoporous silica materials for controlled drug delivery. Chem. Soc. Rev. 41, 3679–3698 (2012)

    Article  CAS  Google Scholar 

  16. A. Schlossbauer, J. Kecht, T.J.A.C.I.E. Bein, Biotin-Avidin as a protease-responsive cap system for controlled guest release from colloidal mesoporous silica. Angew. Chem. 121, 3138–3141 (2009)

    Article  Google Scholar 

  17. S. Giri, B.G. Trewyn, M.P. Stellmaker, V.S. Lin, Stimuli-responsive controlled-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles. Angew. Chem. 44, 5038–5044 (2005)

    Article  CAS  Google Scholar 

  18. Z.Z. Shi, C.B. Yang, R. Li, L.P. Ruan, Microwave thermal-triggered drug delivery using thermosensitive peptide-coated core-shell mesoporous silica nanoparticles. J. Mater. Sci. 55, 6118–6129 (2020)

    Article  CAS  Google Scholar 

  19. A. Schlossbauer, S. Warncke, P.M.E. Gramlich, J. Kecht, A. Manetto, T. Carell, T. Bein, A programmable DNA-based molecular valve for colloidal mesoporous silica. Angew. Chem. Int. Edit. 49, 4734–4737 (2010)

    Article  CAS  Google Scholar 

  20. L.P. Ruan, W. Chen, R.N. Wang, J. Lu, J.I. Zink, Magnetically stimulated drug release using nanoparticles capped by self-assembling peptides. Acs Appl Mater Interface 11, 43835–43842 (2019)

    Article  CAS  Google Scholar 

  21. R. Han, S. Wu, K. Tang, Y. Hou, Facilitating drug release in mesoporous silica coated upconversion nanoparticles by photoacid assistance upon near-infrared irradiation. Adv. Powder Technol. 31, 3860–3866 (2020)

    Article  CAS  Google Scholar 

  22. D.P. Ferris, Y.L. Zhao, N.M. Khashab, H.A. Khatib, J.F. Stoddart, J.I. Zink, Light-operated mechanized nanoparticles. J Am Chem Soc. 131, 1686–1688 (2009)

    Article  CAS  Google Scholar 

  23. W. Cheng, J.P. Nie, L. Xu, C.Y. Liang, Y. Peng, G. Liu, T. Wang, L. Mei, L.Q. Huang, X.W. Zeng, pH-sensitive delivery vehicle based on folic acid-conjugated polydopamine-modified mesoporous silica nanoparticles for targeted cancer therapy. Acs Appl. Mater. Interface 9, 18462–18473 (2017)

    Article  CAS  Google Scholar 

  24. T.T.H. Thi, V.D. Cao, T.N.Q. Nguyen, D.T. Hoang, V.C. Ngo, D.H. Nguyen, Functionalized mesoporous silica nanoparticles and biomedical applications. Mater. Sci. Eng. C 99, 631–656 (2019)

    Article  CAS  Google Scholar 

  25. J.J. Liu, B.L. Zhang, Z. Luo, X.W. Ding, J.H. Li, L.L. Dai, J. Zhou, X.J. Zhao, J.Y. Ye, K.Y. Cai, Enzyme responsive mesoporous silica nanoparticles for targeted tumor therapy in vitro and in vivo. Nanoscale 7, 3614–3626 (2015)

    Article  CAS  Google Scholar 

  26. A. Schlossbauer, J. Kecht, T. Bein, Biotin-avidin as a protease-responsive cap system for controlled guest release from colloidal mesoporous silica. Chem. Int. Edit. 48, 3092–3095 (2009)

    Article  CAS  Google Scholar 

  27. A. Jana, K.S.P. Devi, T.K. Maiti, N.D.P. Singh, Perylene-3-ylmethanol: fluorescent organic nanoparticles as a single-component photoresponsive nanocarrier with real-time monitoring of anticancer drug release. J. Am. Chem. Soc. 134, 7656–7659 (2012)

    Article  CAS  Google Scholar 

  28. M.H. Lee, J.Y. Kim, J.H. Han, S. Bhuniya, J.L. Sessler, C. Kang, J.S. Kim, Direct fluorescence monitoring of the delivery and cellular uptake of a cancer-targeted RGD peptide-appended naphthalimide theragnostic prodrug. J. Am. Chem. Soc. 134, 12668–12674 (2012)

    Article  CAS  Google Scholar 

  29. K. Ock, W.I. Jeon, E.O. Ganbold, M. Kim, J. Park, J.H. Seo, K. Cho, S.W. Joo, S.Y. Lee, Real-time monitoring of glutathione-triggered thiopurine anticancer drug release in live cells investigated by surface-enhanced Raman scattering. Anal. Chem. 84, 2172–2178 (2012)

    Article  CAS  Google Scholar 

  30. S. Santra, C. Kaittanis, O.J. Santiesteban, J.M. Perez, Cell-specific, activatable, and theranostic prodrug for dual-targeted cancer imaging and therapy. J. Am. Chem. Soc. 133, 16680–16688 (2011)

    Article  CAS  Google Scholar 

  31. H. Li, Y.Q. Fu, L.B. Zhang, X.M. Liu, Y. Qu, S.T. Xu, C.L. Lu, In situ route to novel fluorescent mesoporous silica nanoparticles with 8-hydroxyquinolinate zinc complexes and their biomedical applications. Micropor. Mesopor. Mater. 151, 293–302 (2012)

    Article  CAS  Google Scholar 

  32. J.P. Cross, P.G. Sammes, A useful 8-hydroxyquinoline synthon. ChemInform 35, 703–705 (2004)

    Google Scholar 

  33. B.P. Toole, Hyaluronan: from extracellular glue to pericellular cue. Nat. Rev. Cancer 4, 528–539 (2004)

    Article  CAS  Google Scholar 

  34. C. Surace, S. Arpicco, A. Dufay-Wojcicki, V. Marsaud, C. Bouclier, D. Clay, L. Cattel, J.M. Renoir, E. Fattal, Lipoplexes targeting the CD44 hyaluronic acid receptor for efficient transfection of breast cancer cells. Mol. Pharm. 6, 1062–1073 (2009)

    Article  CAS  Google Scholar 

  35. W. Wanxia, W. Youyun, W. Yu, G. Huameng, Z. Hongda, L. Mingxing, Redox/pH dual stimuli-responsive ZnO QDs-gated mesoporous silica nanoparticles as carriers in cancer therapy. IET Nanobiotechnol. 13, 640–649 (2019)

    Article  Google Scholar 

  36. M.J. Vold, in Zeta Potential in Colloid Science. Principles and Applications, ed. R. J. Hunter, (Academic Press, New York, 1982), p. 608

  37. R. Cheng, F.H. Meng, C. Deng, H.A. Klok, Z.Y. Zhong, Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials 34, 3647–3657 (2013)

    Article  CAS  Google Scholar 

  38. T. Arnebrant, M. Wahlgren, Protein—surfactant interactions at solid surfaces. Adv. Colloid Interface Sci. 57, 239–254 (1995)

    Google Scholar 

  39. T. Nash, A.C. Allison, J.S. Harington, Physico-chemical properties of silica in relation to its toxicity. Nature 210, 259–261 (1966)

    Article  CAS  Google Scholar 

  40. I.I. Slowing, C.W. Wu, J.L. Vivero-Escoto, V.S. Lin, Mesoporous silica nanoparticles for reducing hemolytic activity towards mammalian red blood cells. Small 5, 57–62 (2009)

    Article  CAS  Google Scholar 

  41. M. Diociaiuti, F. Bordi, L. Gataleta, G. Baldo, P. Crateri, L. Paoletti, Morphological and functional alterations of human erythrocytes induced by SiO2 particles: an electron microscopy and dielectric spectroscopy study. Environ. Res. 80, 197–207 (1999)

    Article  CAS  Google Scholar 

  42. C.X. Yang, M.L. Cao, H. Liu, Y.Q. He, J. Xu, Y. Du, Y.W. Liu, W.J. Wang, L. Cui, J.J. Hu, F. Gao, The high and low molecular weight forms of hyaluronan have distinct effects on CD44 clustering. J. Biol. Chem. 287, 43094–43107 (2012)

    Article  CAS  Google Scholar 

  43. C.X. Yang, Y.W. Liu, Y.Q. He, Y. Du, W.J. Wang, X.X. Shi, F. Gao, The use of HA oligosaccharide-loaded nanoparticles to breach the endogenous hyaluronan glycocalyx for breast cancer therapy. Biomaterials 34, 6829–6838 (2013)

    Article  CAS  Google Scholar 

  44. H.M. Gong, Z.F. Xie, M.X. Liu, H.D. Zhu, H.H. Sun, Redox-sensitive mesoporous silica nanoparticles functionalized with PEG through a disulfide bond linker for potential anticancer drug delivery. Rsc Adv. 5, 59576–59582 (2015)

    Article  CAS  Google Scholar 

  45. L. Chen, W. Feng, X.J. Zhou, K.X. Qiu, Y.K. Miao, Q.Q. Zhang, M. Qin, L. Li, Y.Z. Zhang, C.L. He, Facile synthesis of novel albumin-functionalized flower-like MoS2 nanoparticles for in vitro chemo-photothermal synergistic therapy. Rsc Adv. 6, 13040–13049 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (No. 81201197). We thank Prof. Xincai Xiao of the Analytic and Testing Center of South-Central University for Nationalities for the measurements of TEM and SEM and Prof. Qingzhi Wu of the Analytic and Testing Center of Wuhan University of Technology for the measurements of XRD and Nitrogen adsorption-desorption.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingxing Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Liu, J., Wang, Y. et al. Redox-responsive mesoporous silica nanoparticles based on fluorescence resonance energy transfer for anti-cancer drug targeting and real-time monitoring. Journal of Materials Research 36, 1883–1898 (2021). https://doi.org/10.1557/s43578-021-00252-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00252-z

Keywords

Navigation