Skip to main content
Log in

Identification and quantitation of pathogenic bacteria via in-situ formation of silver nanoparticles on cell walls, and their detection via SERS

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors present a fast and sensitive surface-enhanced Raman spectroscopy (SERS) method for the determination of Mycobacterium smegmatis. It is based on the formation of silver nanoparticles (AgNPs) directly on the surface of bacteria via the silver mirror reaction. To achieve this, the bacteria are mixed with silver nitrate, treated with NaOH, and then with ammonium hydroxide until all silver oxide precipitate is completely dissolved. Treatment of the reaction mixture with glucose at 55 °C results in the formation of AgNPs on the surface of the bacteria. The detection of M. smegmatis by SERS is simple and straightforward in that 4 μL of a suspension of Ag-coated M. smegmatis are pipetted onto a polypropylene surface and SERS spectra are acquired. Quantitative evaluation is done best by using the distinct vibrational band at 731 cm−1. Routine detection and identification of M. smegmatis thereafter required ~1000 bacilli per laser spot area and a limit of detection below 100 bacilli, using a cheap, dispersive Raman spectrometer. Our method was also applied to detect M. bovis BCG, M. tuberculosis, Staphylococcus aureus, S. epidermis, Bacillus cereus and two laboratory strains of Escherichia coli, thus demonstrating the wider applicability of this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. Ivnitski D, Abdel-Hamid I, Atanasov P, Wilkins E (1999) Biosensors for detection of pathogenic bacteria. Biosens Bioelectron 14:599–624

    Article  CAS  Google Scholar 

  2. Thiramanas R, Laocharoensuk R (2016) Competitive binding of polyethyleneimine- coated gold nanoparticles to enzymes and bacteria: a key mechanism for low-level colorimetric detection of gram-positive and gram-negative bacteria. Microchim Acta 183:389–396

    Article  CAS  Google Scholar 

  3. Xie Y, Xu L, Wang Y, Shao J, Wang L, Wang H, Qiana H, Yao W (2013) Label-free detection of the foodborne pathogens of Enterobacteriaceae by surface-enhanced Raman spectroscopy. Anal Methods 5:946–952

    Article  CAS  Google Scholar 

  4. Cam D, Keseroglu K, Kahraman M, Sahin F, Culha M (2010) Multiplex identification of bacteria in bacterial mixtures with surface-enhanced Raman scattering. J Raman Spectrosc 41:484–489

    Article  CAS  Google Scholar 

  5. Liu TT, Lin YH, Hung CS, Liu TJ, Chen Y, Huang YC, Tsai TH, Wang HH, Wang DW, Wang JK, Wang YL, Lin CH (2009) A high speed detection platform based on surface-enhanced Raman scattering for monitoring antibiotic-induced chemical changes in bacteria cell wall. PLoS One 4:e5470

    Article  Google Scholar 

  6. Li D-W, Zhai W-L, Li Y-T, Long Y-T (2014) Recent progress in surface enhanced Raman spectroscopy for the detection of environmental pollutants. Microchim Acta 181:23–43

    Article  CAS  Google Scholar 

  7. Zhou H, Yang D, Mircescu NE, Ivleva NP, Schwarzmeier K, Wieser A, Schubert S, Niessner R, Haisch C (2015) Surface-enhanced Raman scattering detection of bacteria on microarrays at single cell levels using silver nanoparticles. Microchim Acta 182:2259–2266

    Article  CAS  Google Scholar 

  8. Jarvis RM, Goodacre R (2004) Discrimination of bacteria using surface-enhanced Raman spectroscopy. Anal Chem 76:40–47

    Article  CAS  Google Scholar 

  9. Mungroo NA, Oliveira G, Neethirajan S (2016) SERS based point-of-care detection of food-borne pathogens. Microchim Acta 183:697–707

    Article  CAS  Google Scholar 

  10. Mircescu NE, Zhou H, Leopold N, Chiş V, Ivleva NP, Niessner R, Wieser A, Haisch C (2014) Towards a receptor-free immobilization and SERS detection of urinary tract infections causative pathogens. Anal Bioanal Chem 406:3051–3058

    Article  CAS  Google Scholar 

  11. Kahraman M, Yazıcı MM, Şahin F, Çulha M (2008) Convective assembly of bacteria for surface-enhanced Raman scattering. Langmuir 24:894–901

    Article  CAS  Google Scholar 

  12. Ho J-Y, Liu T-Y, Wei J-C, Wang J-K, Wang Y-L, Lin J-J (2014) Selective SERS detecting of hydrophobic microorganisms by Tricomponent nanohybrids of Silver − Silicate-Platelet − Surfactant. ACS Appl Mater Interfaces 6:1541–1549

    Article  CAS  Google Scholar 

  13. Kahraman M, Zamaleeva AI, Fakhrullin RF, Culha M (2009) Layer-by-layer coating of bacteria with noble metal nanoparticles for surface-enhanced Raman scattering. Anal Bioanal Chem 395:2559–2567

    Article  CAS  Google Scholar 

  14. Rivera-Betancourt OE, Sheppard ES, Krause DC, Dluhy RA (2014) Layer-by-layer polyelectrolyte encapsulation of mycoplasma pneumonia for enhanced Raman detection. Analyst 139:4287–4295

    Article  CAS  Google Scholar 

  15. Knauer M, Ivleva NP, Niessner R, Haisch C (2010) Optimized surface- enhanced Raman scattering (SERS) colloids for the characterization of microorganisms. Anal Sci 26:761–766

    Article  CAS  Google Scholar 

  16. Wang Y, Ravindranath S, Irudayaraj J (2011) Separation and detection of multiple pathogens in a food matrix by magnetic SERS nanoprobes. Anal Bioanal Chem 399:1271–1278

    Article  CAS  Google Scholar 

  17. Guven B, Basaran-Akgul N, Temur E, Tamer U, Boyacı İH (2011) SERS-based sandwich immunoassay using antibody coated magnetic nanoparticles for Escherichia coli enumeration. Analyst 136:740–748

    Article  CAS  Google Scholar 

  18. Temur E, Boyacı İH, Tamer U, Unsal H, Aydogan N (2010) A highly sensitive detection platform based on surface-enhanced Raman scattering for Escherichia coli enumeration. Anal Bioanal Chem 397:1595–1604

    Article  CAS  Google Scholar 

  19. Efrima S, Zeiri L (2009) Understanding SERS of bacteria. J Raman Spectrosc 40:277–288

    Article  CAS  Google Scholar 

  20. Cheng M-L, Tsai B-C, Yang J (2011) Silver nanoparticle-treated filter paper as a highly sensitive surface-enhanced Raman scattering (SERS) substrate for detection of tyrosine in aqueous solution. Anal Chim Acta 708:89–96

    Article  CAS  Google Scholar 

  21. Park HK, Yoon JK, Kim K (2006) Novel fabrication of Ag thin film on glass for efficient surface-enhanced Raman scattering. Langmuir 22:1626–1629

    Article  CAS  Google Scholar 

  22. Wilson WW, Wade MM, Holman SC, Champlin FR (2001) Status of methods for assessing bacterial cell surface charge q properties based on zeta potential measurements. J Microbiol Methods 43:153–164

    Article  CAS  Google Scholar 

  23. Yang D-P, Chen S, Huang P, Wang X, Jiang W, Pandoli O, Cui D (2010) Bacteria- template synthesized silver microspheres with hollow and porous structures as excellent SERS substrate. Green Chem 12:2038–2042

    Article  CAS  Google Scholar 

  24. Alula MT, Yang J (2015) Photochemical decoration of gold nanoparticles on polymer stabilized magnetic microspheres for determination of adenine by surface-enhanced Raman spectroscopy. Microchim Acta 182:1017–1024

    Article  CAS  Google Scholar 

  25. Li J, McLandsborough LA (1999) The effects of the surface charge and hydrophobicity of Escherichia coli on its adhesion to beef muscle. Int J Food Microbiol 53:185–193

    Article  CAS  Google Scholar 

  26. Zhou H, Yang D, Ivleva NP, Mircescu NE, Niessner R, Haisch C (2014) SERS detection of bacteria in water by in situ coating with Ag nanoparticles. Anal Chem 86:1525–1533

    Article  CAS  Google Scholar 

  27. Liu T-Y, Ho J-Y, Wei J-C, Cheng W-C, Chen I-H, Shiue J, Wang H-H, Wang J-K, Wang Y-L, Lin J-J (2014) Label-free and culture-free microbe detection by three dimensional hot-junctions of flexible Raman enhancing nanohybrid platelets. J Mater Chem B 2:1136–1143

    Article  CAS  Google Scholar 

  28. Zhou H, Yang D, Ivleva NP, Mircescu NE, Schubert S, Niessner R, Wieser A, Haisch C (2015) Label-free in situ discrimination of live and dead bacteria by surface-enhanced Raman scattering. Anal Chem 87:6553–6561

    Article  CAS  Google Scholar 

  29. Premasiri WR, Moir DT, Klempner MS, Krieger N, Jones G II, Ziegler LD (2005) Characterization of the surface enhanced Raman scattering (SERS) of bacteria. J Phys Chem B 109:312–320

    Article  CAS  Google Scholar 

  30. Yang X, Gu C, Qian F, Li Y, Zhang JZ (2011) Highly sensitive detection of proteins and bacteria in aqueous solution using surface-enhanced Raman scattering and optical fibers. Anal Chem 83:5888–5894

    Article  CAS  Google Scholar 

  31. Zeiri L, Bronk BV, Shabtai Y, Eichler J, Efrima S (2004) Surface enhanced Raman spectroscopy as a tool for probing specific biochemical components in bacteria. Appl Spectrosc 58:33–40

    Article  CAS  Google Scholar 

  32. Maria A, Gaeini M, Sardar S (2015) Natural antimicrobial peptides against mycobacterium tuberculosis. J Antimicrob Chemother 70:1285–1289

    Article  Google Scholar 

  33. Buijtels PCAM, Willemse-Erix HFM, Petit PLC, Endtz HP, Puppels GJ, Verbrugh HA, van Belkum A, van Soolingen D, Maquelin K (2008) Rapid identification of ycobacteria by Raman spectroscopy. J Clin Micro 46:961–965

    Article  CAS  Google Scholar 

  34. Cheng H-W, Huan S-Y, Wu H-L, Shen G-L, Yu R-Q (2009) Surface-enhanced Raman spectroscopic detection of a bacteria biomarker using gold nanoparticle immobilized substrates. Anal Chem 81:9902–9912

    Article  CAS  Google Scholar 

Download references

Acknowledgements

JMB thanks the NRF for a South African Research Chair grant. This research was supported by a grant to JMB from the South African Medical Research Council’s Strategic Health Innovation Partnership.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan M Blackburn.

Ethics declarations

This research involved no human- or animal-derived samples or participants.

Electronic supplementary material

ESM 1

(DOC 38.5 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alula, M.T., Krishnan, S., Hendricks, N.R. et al. Identification and quantitation of pathogenic bacteria via in-situ formation of silver nanoparticles on cell walls, and their detection via SERS. Microchim Acta 184, 219–227 (2017). https://doi.org/10.1007/s00604-016-2013-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-2013-2

Keywords

Navigation