Skip to main content
Log in

Competitive binding of polyethyleneimine-coated gold nanoparticles to enzymes and bacteria: a key mechanism for low-level colorimetric detection of gram-positive and gram-negative bacteria

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The article describes a simple and rapid method for colorimetric detection of bacteria. It is based on competitive binding of positively charged polyethyleneimine-coated gold nanoparticles (PEI-AuNPs) to negatively charged enzymes and bacteria. The PEI-AuNPs are electrostatically attracted by both the bacterial surface and the enzyme β-galactosidase (β-Gal). Binding to the latter results in the inhibition of enzyme activity. However, in the presence of a large number of bacteria, the PEI-AuNPs preferentially bind to bacteria. Hence, the enzyme will not be inhibited and its activity can be colorimetrically determined via hydrolysis of the chromogenic substrate chlorophenol red β-D-galactopyranoside (CPRG). The detection limit of this assay is as low as 10 cfu·mL−1, and the linear range extends from 106 to 108 cfu·mL−1. The assay is applicable to both Gram-negative (such as enterotoxigenic Escherichia coli; ETEC) and Gram-positive (Staphylococcus aureus; S. aureus) bacteria. Results are obtained within 10 min using an optical reader, and within 2–3 h by bare-eye detection. The method was applied to the identification of ETEC contamination at a level of 10 cfu·mL−1 in spiked drinking water. Given its low detection limit and rapidity (sample preconcentration is not required), this method holds great promise for on-site detection of total bacterial contamination.

The method is based on competitive binding of positively charged polyethyleneimine-coated gold nanoparticles to negatively charged enzymes and bacteria. The detection limit is as low as 10 cfu·mL−1, and the linear range extends from 106 to 108 cfu·mL−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Maalouf R, Fournier-Wirth C, Coste J, Chebib H, Saïkali Y, Vittori O, Errachid A, Cloarec J-P, Martelet C, Jaffrezic-Renault N (2007) Label-free detection of bacteria by electrochemical impedance spectroscopy: comparison to surface plasmon resonance. Anal Chem 79:4879–4886

    Article  CAS  Google Scholar 

  2. Diarrhoeal. World Health Organization Homepage. http://www.who.int/vaccine_research/diseases/diarrhoeal/en/index4.html. Accessed 20 March 2013

  3. Boyd RF (1988) General microbiology, 2nd edn. Times Mirror/Mosby College Publishing, St. Louis, pp 401–404

    Google Scholar 

  4. Sanvicens N, Pastells C, Pascual N, Marco MP (2009) Nanoparticle-based biosensors for detection of pathogenic bacteria. TrAC, Trend Anal Chem 28:1243–1252

    Article  CAS  Google Scholar 

  5. Lui C, Cady NC, Batt CA (2009) Nucleic acid-based detection of bacterial pathogens using integrated microfluidic platform systems. Sensors 9:3713–3744

    Article  CAS  Google Scholar 

  6. Wang Y, Deng M, Jia L (2014) N-methylimidazolium functionalized magnetic particles as adsorbents for rapid and efficient capture of bacteria. Microchim Acta 181:1275–1283

    Article  CAS  Google Scholar 

  7. Park J, Park S, Kim Y-K (2010) Multiplex detection of pathogens using an immunochromatographic assay strip. BioChip J 4:305–312

    Article  CAS  Google Scholar 

  8. Zhao X, Hilliard LR, Mechery SJ, Wang Y, Bagwe RP, Jin S, Tan W (2004) A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles. Proc Natl Acad Sci U S A 101:15027–15032

    Article  CAS  Google Scholar 

  9. Hahn MA, Tabb JS, Krauss TD (2005) Detection of single bacterial pathogens with semiconductor quantum dots. Anal Chem 77:4861–4869

    Article  CAS  Google Scholar 

  10. Scindia Y, Silbert L, Volinsky R, Kolusheva S, Jelinek R (2007) Colorimetric detection and fingerprinting of bacteria by glass-supported lipid/polydiacetylene films. Langmuir 23:4682–4687

    Article  CAS  Google Scholar 

  11. Duan YF, Ning Y, Song Y, Deng L (2014) Fluorescent aptasensor for the determination of Samonella typhimurium based on a graphene oxide platform. Microchim Acta 181:647–653

    Article  CAS  Google Scholar 

  12. Serra B, Morales MD, Zhang J, Reviejo AJ, Hall EH, Pingarron JM (2005) In-a-day electrochemical detection of coliforms in drinking water using a tyrosinase composite biosensor. Anal Chem 77:8115–8121

    Article  CAS  Google Scholar 

  13. Shabani A, Zourob M, Allain B, Marquette CA, Lawrence MF, Mandeville R (2008) Bacteriophage-modified microarrays for the direct impedimetric detection of bacteria. Anal Chem 80:9475–9482

    Article  CAS  Google Scholar 

  14. Subramanian A, Irudayaraj J, Ryan T (2006) A mixed self-assembled monolayer-based surface plasmon immunosensor for detection of E. coli O157:H7. Biosens Bioelectron 21:998–1006

    Article  CAS  Google Scholar 

  15. Lan M, Wu J, Liu W, Zhang W, Ge J, Zhang H, Sun J, Zhao W, Wang P (2012) Copolythiophene-derived colorimetric and fluorometric sensor for visually supersensitive determination of lipopolysaccharide. J Am Chem Soc 134:6685–6694

    Article  CAS  Google Scholar 

  16. Sun J, Ge J, Liu W, Wang X, Fan Z, Zhao W, Zhang H, Wang P, Lee S-T (2012) A facile assay for direct colorimetric visualization of lipopolysaccharides at low nanomolar level. Nano Res 5:486–493

    Article  CAS  Google Scholar 

  17. Jokerst JC, Adkins JA, Bisha B, Mentele MM, Goodridge LD, Henry CS (2012) Development of a paper-based analytical device for colorimetric detection of select foodborne pathogens. Anal Chem 84:2900–2907

    Article  CAS  Google Scholar 

  18. Hossain SMZ, Ozimok C, Sicard C, Aguirre SD, Ali MM, Li Y, Brennan JD (2012) Multiplexed paper test strip for quantitative bacterial detection. Anal Bioanal Chem 403:1567–1576

    Article  CAS  Google Scholar 

  19. Su H, Ma Q, Shang K, Liu T, Yin H, Ai S (2012) Gold nanoparticles as colorimetric sensor: a case study on E. coli O157:H7 as a model for gram-negative bacteria. Sensors Actuators B 161:298–303

    Article  CAS  Google Scholar 

  20. Lim S, Koo OK, You YS, Lee YE, Kim M-S, Chang P-S, Kang DH, Yu J-H, Choi YJ, Gunasekaran S (2012) Enhancing nanoparticle-based visible detection by controlling the extent of aggregation. Sci Rep 2:Art. No. 456

  21. Miranda OR, Li X, Garcia-Gonzalez L, Zhu Z-J, Yan B, Bunz UHF, Rotello VM (2011) Colorimetric bacteria sensing using a supramolecular enzyme-nanoparticle biosensor. J Am Chem Soc 133:9650–9653

    Article  CAS  Google Scholar 

  22. Li J, Wu L-J, Guo S-S, Fu H-E, Chen G-N, Yang H-H (2013) Simple colorimetric bacterial detection and high-throughput drug screening based on a graphene-enzyme complex. Nanoscale 5:619–623

    Article  CAS  Google Scholar 

  23. Hayden SC, Zhao G, Saha K, Phillips RL, Li X, Miranda OR, Rotello VM, El-Sayed MA, Schmidt-Krey I, Bunz UHF (2012) Aggregation and interaction of cationic nanoparticles on bacterial surfaces. J Am Chem Soc 134:6920–6923

    Article  CAS  Google Scholar 

  24. Hankins JV, Madsen JA, Giles DK, Brodbelt JS, Trent MS (2012) Amino acid addition to Vibrio cholerae LPS establishes a link between surface remodeling in Gram-positive and Gram-negative bacteria. Proc Natl Acad Sci U S A 109:8722–8727

    Article  CAS  Google Scholar 

  25. Kim K, Lee HB, Lee JW, Park HK, Shin KS (2008) Self-assembly of poly(ethylenimine)-capped Au nanoparticles at a toluene-water interface for efficient surface-enhanced raman scattering. Langmuir 24:7178–7183

    Article  CAS  Google Scholar 

  26. Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75

    Article  Google Scholar 

  27. Frens G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat Phys Sci 241:20–22

    Article  CAS  Google Scholar 

  28. Padmanabhan SC, McGrath J, Bardosova M, Pemble ME (2012) A facile method for the synthesis of highly monodisperse silica@gold@silica core-shell-shell particles and their use in the fabrication of three-dimensional metallodielectric photonic crystals. J Mater Chem 22:11978–11987

    Article  CAS  Google Scholar 

  29. Matthews BW (2005) The structure of E. coli β-galactosidase. CR Biol 328:549–556

    Article  CAS  Google Scholar 

  30. Ryter A (1988) Contribution of new cryomethods to a better knowledge of bacterial anatomy. Ann Inst Pasteur Microbiol 139:33–44

    Article  CAS  Google Scholar 

  31. Li B, Logan BE (2004) Bacterial adhesion to glass and metal-oxide surfaces. Colloids Surf B: Biointerfaces 36:81–90

    Article  CAS  Google Scholar 

  32. Arkhangelsky E, Gitis V (2008) Effect of transmembrane pressure on rejection of viruses by ultrafiltration membranes. Sep Purif Technol 62:619–628

    Article  CAS  Google Scholar 

  33. Berry V, Gole A, Kundu S, Murphy CJ, Saraf RF (2005) Deposition of CTAB-terminated nanorods on bacteria to form highly conducting hybrid systems. J Am Chem Soc 127:17600–17601

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by National Nanotechnology Center (NANOTEC), the National Science and Technology Development Agency (NSTDA), Thailand. Funding program number P1011227 and P1451182.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rawiwan Laocharoensuk.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 2.55 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thiramanas, R., Laocharoensuk, R. Competitive binding of polyethyleneimine-coated gold nanoparticles to enzymes and bacteria: a key mechanism for low-level colorimetric detection of gram-positive and gram-negative bacteria. Microchim Acta 183, 389–396 (2016). https://doi.org/10.1007/s00604-015-1657-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1657-7

Keywords

Navigation