Skip to main content
Log in

Colorimetric determination of cysteine by exploiting its inhibitory action on the peroxidase-like activity of Au@Pt core-shell nanohybrids

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors report that the peroxidase-like activity of Au@Pt core-shell nanohybrids (Au@PtNHs) is selectively inhibited by cysteine. This finding has led to  a highly sensitive colorimetric assay for cysteine that is based on the nanohybrid-catalyzed oxidation of TMB by H2O2 to form a blue product. The method has a detection limit of 5.0 nM and a linear range from 10 nM to 20 μM. The assay is highly selective over other amino acids. It was successfully applied to the determination of cysteine in an injection containing a mixture of amino acids.

The peroxidase-like activity of Au@Pt core-shell nanohybrids (Au@PtNHs) is selectively inhibited by cysteine, enabling the determination of cysteine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Li R, Zhang H, Ling J, Huang C, Wang J (2016) Plasmonic platforms for colorimetric sensing of cysteine. Appl Spectrosc Rev 51:129–147. doi:10.1021/ac010541m

    Article  CAS  Google Scholar 

  2. Lunar ML, Rubio S, Pérez-Bendito D, Carreto ML, McLeod CW (1997) Hexadecylpyridinium chloride micelles for the simultaneous kinetic determination of cysteine and cystine by their induction of the iodine-azide reaction. Anal Chim Acta 337:341–349. doi:10.1016/S0003-2670(96)00430-8

    Article  Google Scholar 

  3. Salimi A, Pourbeyram S (2003) Renewable sol–gel carbon ceramic electrodes modified with a Ru-complex for the amperometric detection of l-cysteine and glutathione. Talanta 60:205–214. doi:10.1016/S0039-9140(03)00125-5

    Article  CAS  Google Scholar 

  4. Kuśmierek K, Głowacki R, Bald E (2006) Analysis of urine for cysteine, cysteinylglycine, and homocysteine by high-performance liquid chromatography. Anal Bioanal Chem 385:855–860. doi:10.1007/s00216-006-0454-x

    Article  Google Scholar 

  5. Tcherkas YV, Denisenko AD (2001) Simultaneous determination of several amino acids, including homocysteine, cysteine and glutamic acid, in human plasma by isocratic reversed-phase high-performance liquid chromatography with fluorimetric detection. J Chromatogr A 913:309–313. doi:10.1016/S0021-9673(00)01201-2

    Article  CAS  Google Scholar 

  6. Amjadi M, Abolghasemi-Fakhri Z, Hallaj T (2015) Carbon dots-silver nanoparticles fluorescence resonance energy transfer system as a novel turn-on fluorescent probe for selective determination of cysteine. J Photochem Photobiol A Chem 309:8–14. doi:10.1016/j.jphotochem.2015.04.016

    Article  CAS  Google Scholar 

  7. Chen Z, Lu D, Cai Z, Dong C, Shuang S (2014) Bovine serum albumin-confined silver nanoclusters as fluorometric probe for detection of biothiols. Luminescence 29:722–727. doi:10.1002/bio.2613

    Article  CAS  Google Scholar 

  8. Xu X, Qiao J, Li N, Qi L, Zhang S (2015) Fluorescent probe for turn-on sensing of l-cysteine by ensemble of AuNCs and polymer protected AuNPs. Anal Chim Acta 879:97–103. doi:10.1016/j.aca.2015.03.036

    Article  CAS  Google Scholar 

  9. Chen S, Gao H, Shen W, Lu C, Yuan Q (2014) Colorimetric detection of cysteine using noncrosslinking aggregation of fluorosurfactant-capped silver nanoparticles. Sensors Actuators B Chem 190:673–678. doi:10.1016/j.snb.2013.09.036

    Article  CAS  Google Scholar 

  10. Gao H, Shen W, Lu C, Liang H, Yuan Q (2013) Surface plasmon resonance additivity of gold nanoparticles for colorimetric identification of cysteine and homocysteine in biological fluids. Talanta 115:1–5. doi:10.1016/j.talanta.2013.03.073

    Article  CAS  Google Scholar 

  11. Park JI, Nguyen TD, de Queiros SG, Bahng JH, Srivastava S, Zhao G, Sun K, Zhang P, Glotzer SC, Kotov NA (2014) Terminal supraparticle assemblies from similarly charged protein molecules and nanoparticles. Nat Commun 5:3593. doi:10.1038/ncomms4593

    CAS  Google Scholar 

  12. Hou XY, Chen S, Tang J, Long YF (2014) Visual determination of trace cysteine based on promoted corrosion of triangular silver nanoplates by sodium thiosulfate. Spectrochim Acta A Mol Biomol Spectrosc 125:285–289. doi:10.1016/j.saa.2014.01.098

    Article  CAS  Google Scholar 

  13. Lin X-Q, Deng H-H, Wu G-W, Peng H-P, Liu A-L, Lin X-H, Xia X-H, Chen W (2015) Platinum nanoparticles/graphene-oxide hybrid with excellent peroxidase-like activity and its application for cysteine detection. Analyst 140:5251–5256. doi:10.1039/C5AN00809C

    Article  CAS  Google Scholar 

  14. Sun Y, Wang J, Li W, Zhang J, Zhang Y, Fu Y (2015) DNA-stabilized bimetallic nanozyme and its application on colorimetric assay of biothiols. Biosens Bioelectron 74:1038–1046. doi:10.1016/j.bios.2015.08.001

    Article  CAS  Google Scholar 

  15. Wei X, Qi L, Tan J, Liu R, Wang F (2010) A colorimetric sensor for determination of cysteine by carboxymethyl cellulose-functionalized gold nanoparticles. Anal Chim Acta 671:80–84. doi:10.1016/j.aca.2010.05.006

    Article  CAS  Google Scholar 

  16. Hsiao Y-P, Su W-Y, Cheng J-R, Cheng S-H (2011) Electrochemical determination of cysteine based on conducting polymers/gold nanoparticles hybrid nanocomposites. Electrochim Acta 56:6887–6895. doi:10.1016/j.electacta.2011.06.031

    Article  CAS  Google Scholar 

  17. Taei M, Hasanpour F, Salavati H, Banitaba SH, Kazemi F (2016) Simultaneous determination of cysteine, uric acid and tyrosine using Au-nanoparticles/poly(E)-4-(p-tolyldiazenyl)benzene-1,2,3-triol film modified glassy carbon electrode. Mater Sci Eng C 59:120–128. doi:10.1016/j.msec.2015.10.004

    Article  CAS  Google Scholar 

  18. Wang L, Tricard S, Yue P, Zhao J, Fang J, Shen W (2016) Polypyrrole and graphene quantum dots @ Prussian blue hybrid film on graphite felt electrodes: application for amperometric determination of l-cysteine. Biosens Bioelectron 77:1112–1118. doi:10.1016/j.bios.2015.10.088

    Article  CAS  Google Scholar 

  19. Zhang L, Ning L, Zhang Z, Li S, Yan H, Pang H, Ma H (2015) Fabrication and electrochemical determination of l-cysteine of a composite film based on V-substituted polyoxometalates and Au@2Ag core–shell nanoparticles. Sensors Actuators B Chem 221:28–36. doi:10.1016/j.snb.2015.06.070

    Article  CAS  Google Scholar 

  20. Yu X, Wang Q, Liu X, Luo X (2012) A sensitive chemiluminescence method for the determination of cysteine based on silver nanoclusters. Microchim Acta 179:323–328. doi:10.1007/s00604-012-0893-3

    Article  CAS  Google Scholar 

  21. Xie J, Zhang X, Wang H, Zheng H, Huang Y, Xie J (2012) Analytical and environmental applications of nanoparticles as enzyme mimetics. TrAC Trends Anal Chem 39:114–129. doi:10.1016/j.trac.2012.03.021

    Article  CAS  Google Scholar 

  22. Lien CW, Chen YC, Chang HT, Huang CC (2013) Logical regulation of the enzyme-like activity of gold nanoparticles by using heavy metal ions. Nanoscale 5:8227–8234. doi:10.1039/c3nr01836a

    Article  CAS  Google Scholar 

  23. Long YJ, Li YF, Liu Y, Zheng JJ, Tang J, Huang CZ (2011) Visual observation of the mercury-stimulated peroxidase mimetic activity of gold nanoparticles. Chem Commun 47:11939–11941. doi:10.1039/C1CC14294A

    Article  CAS  Google Scholar 

  24. Lien CW, Tseng YT, Huang CC, Chang HT (2014) Logic control of enzyme-like gold nanoparticles for selective detection of lead and mercury ions. Anal Chem 86:2065–2072. doi:10.1021/ac4036789

    Article  CAS  Google Scholar 

  25. Zhao D, Chen C, Lu L, Yang F, Yang X (2015) A label-free colorimetric sensor for sulfate based on the inhibition of peroxidase-like activity of cysteamine-modified gold nanoparticles. Sensors Actuators B Chem 215:437–444. doi:10.1016/j.snb.2015.04.010

    Article  CAS  Google Scholar 

  26. Gao Z, Tang D, Tang D, Niessner R, Knopp D (2015) Target-induced nanocatalyst deactivation facilitated by core@shell nanostructures for signal-amplified headspace-colorimetric assay of dissolved hydrogen sulfide. Anal Chem 87:10153–10160. doi:10.1021/acs.analchem.5b03008

    Article  CAS  Google Scholar 

  27. Wang N, Sun J, Chen L, Fan H, Ai S (2015) A Cu2(OH)3Cl-CeO2 nanocomposite with peroxidase-like activity, and its application to the determination of hydrogen peroxide, glucose and cholesterol. Microchim Acta 182:1733–1738. doi:10.1007/s00604-015-1506-8

    Article  CAS  Google Scholar 

  28. Xiang Z, Wang Y, Ju P, Zhang D (2016) Optical determination of hydrogen peroxide by exploiting the peroxidase-like activity of AgVO3 nanobelts. Microchim Acta 183:457–463. doi:10.1007/s00604-015-1670-x

    Article  CAS  Google Scholar 

  29. Čunderlová V, Hlaváček A, Horňáková V, Peterek M, Němeček D, Hampl A, Eyer L, Skládal P (2016) Catalytic nanocrystalline coordination polymers as an efficient peroxidase mimic for labeling and optical immunoassays. Microchim Acta 183:651–658. doi:10.1007/s00604-015-1697-z

    Article  Google Scholar 

  30. Zhang Y, Lu F, Yan Z, Wu D, Ma H, Du B, Wei Q (2015) Electrochemiluminescence immunosensing strategy based on the use of Au@Ag nanorods as a peroxidase mimic and NH4CoPO4 as a supercapacitive supporter: application to the determination of carcinoembryonic antigen. Microchim Acta 182:1421–1429. doi:10.1007/s00604-015-1473-0

    Article  CAS  Google Scholar 

  31. Liang G, Liu X (2015) G-quadruplex based impedimetric 2-hydroxyfluorene biosensor using hemin as a peroxidase enzyme mimic. Microchim Acta 182:2233–2240. doi:10.1007/s00604-015-1565-x

    Article  CAS  Google Scholar 

  32. Ni P, Dai H, Wang Y, Sun Y, Shi Y, Hu J, Li Z (2014) Visual detection of melamine based on the peroxidase-like activity enhancement of bare gold nanoparticles. Biosens Bioelectron 60:286–291. doi:10.1016/j.bios.2014.04.029

    Article  CAS  Google Scholar 

  33. Gao Z, Xu M, Lu M, Chen G, Tang D (2015) Urchin-like (gold core)@(platinum shell) nanohybrids: a highly efficient peroxidase-mimetic system for in situ amplified colorimetric immunoassay. Biosens Bioelectron 70:194–201. doi:10.1016/j.bios.2015.03.039

    Article  CAS  Google Scholar 

  34. Yang Z, Chai Y, Yuan R, Zhuo Y, Li Y, Han J, Liao N (2014) Hollow platinum decorated Fe3O4 nanoparticles as peroxidase mimetic couple with glucose oxidase for pseudobienzyme electrochemical immunosensor. Sensors Actuators B Chem 193:461–466. doi:10.1016/j.snb.2013.11.010

    Article  CAS  Google Scholar 

  35. Peng C-F, Pan N, Xie Z-J, Wu L-L (2016) Highly sensitive and selective colorimetric detection of Hg2+ based on the separation of Hg2+ and formation of catalytic DNA–gold nanoparticles. Anal Methods 8:1021–1025. doi:10.1039/c5ay02843d

    Article  CAS  Google Scholar 

  36. Chen H, Wang F, Li K, Woo KC, Wang J, Li Q, Sun L-D, Zhang X, Lin H-Q, Yan C-H (2012) Plasmonic percolation: Plasmon-manifested dielectric-to-metal transition. ACS Nano 6:7162–7171. doi:10.1021/nn302220y

    Article  CAS  Google Scholar 

  37. Wang F, Shen YR (2006) General properties of local Plasmons in metal nanostructures. Phys Rev Lett 97:206806

    Article  Google Scholar 

  38. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2:577–583. doi:10.1038/nnano.2007.260

    Article  CAS  Google Scholar 

  39. Ray C, Dutta S, Sarkar S, Sahoo R, Roy A, Pal T (2014) Intrinsic peroxidase-like activity of mesoporous nickel oxide for selective cysteine sensing. J Mater Chem B 2:6097. doi:10.1039/c4tb00968a

    Article  CAS  Google Scholar 

  40. Kumara VV, Anthony SP (2014) AuNPs based selective colorimetric sensor for cysteine at wide pH range: investigation of capping molecule structure on the colorimetric sensing and catalytic properties. RSC Adv 4:18467–18472. doi:10.1039/C4RA00345D

    Article  Google Scholar 

  41. Bernardi F, Traverse A, Olivi L, Alves MCM, Morais J (2011) Correlating sulfur reactivity of PtxPd1–x nanoparticles with a bimetallic interaction effect. J Phys Chem C 115:12243–12249. doi:10.1021/jp200182a

    Article  CAS  Google Scholar 

  42. Fei S, Chen J, Yao S, Deng G, He D, Kuang Y (2005) Electrochemical behavior of l-cysteine and its detection at carbon nanotube electrode modified with platinum. Anal Biochem 339:29–35. doi:10.1016/j.ab.2005.01.002

    Article  CAS  Google Scholar 

  43. Lu C-H, Wang Y-W, Ye S-L, Chen G-N, Yang H-H (2012) Ultrasensitive detection of Cu2+ with the naked eye and application in immunoassays. NPG Asia Mater 4:e10

    Article  Google Scholar 

  44. Wang F, Liu X, Lu C-H, Willner I (2013) Cysteine-mediated aggregation of Au nanoparticles: the development of a H2O2 sensor and oxidase-based biosensors. ACS Nano 7:7278–7286. doi:10.1021/nn402810x

    Article  CAS  Google Scholar 

  45. Xiao Q, Shang F, Xu X, Li Q, Lu C, Lin J-M (2011) Specific detection of cysteine and homocysteine in biological fluids by tuning the pH values of fluorosurfactant-stabilized gold colloidal solution. Biosens Bioelectron 30:211–215. doi:10.1016/j.bios.2011.09.013

    Article  CAS  Google Scholar 

  46. Oliveira E, Núñez C, Santos HM, Fernández-Lodeiro J, Fernández-Lodeiro A, Capelo JL, Lodeiro C (2015) Revisiting the use of gold and silver functionalised nanoparticles as colorimetric and fluorometric chemosensors for metal ions. Sensors Actuators B Chem 212:297–328. doi:10.1016/j.snb.2015.02.026

    Article  CAS  Google Scholar 

  47. Yu C-J, Chen T-H, Jiang J-Y, Tseng W-L (2014) Lysozyme-directed synthesis of platinum nanoclusters as a mimic oxidase. Nanoscale 6:9618–9624. doi:10.1039/C3NR06896J

    Article  CAS  Google Scholar 

  48. He W, Liu Y, Yuan J, Yin J-J, Wu X, Hu X, Zhang K, Liu J, Chen C, Ji Y, Guo Y (2011) Au@Pt nanostructures as oxidase and peroxidase mimetics for use in immunoassays. Biomaterials 32:1139–1147. doi:10.1016/j.biomaterials.2010.09.040

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the National Natural Science Foundation of China (31371767), the National S&T support program of China (2015BAD17B02) and the Natural Science Foundation of Jiangsu Province (BK20141108).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chi-Fang Peng or Zheng-Jun Xie.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 506 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, N., Li-Ying, W., Wu, LL. et al. Colorimetric determination of cysteine by exploiting its inhibitory action on the peroxidase-like activity of Au@Pt core-shell nanohybrids. Microchim Acta 184, 65–72 (2017). https://doi.org/10.1007/s00604-016-1981-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1981-6

Keywords

Navigation