Skip to main content

Advertisement

Log in

Carbon/PEEK nails: a case–control study of 22 cases

  • Original Article
  • Published:
European Journal of Orthopaedic Surgery & Traumatology Aims and scope Submit manuscript

Abstract

Background

Interest around carbon/PEEK plates and nails has been raising. The elastic modulus close to the bone, the high load-carrying capacity and radiolucency make CFR/PEEK materials a potential breakthrough. In the literature, there are abundant data about CFR/PEEK plates in the treatment of proximal humerus, distal radius and distal fibula fractures. In patients affected by bone metastasis, CFR/PEEK nails were proved effective and safe with 12 months of follow-up. Very little is known about performances of CFR/PEEK nails in patients affected by other pathologies.

Purposes

The aim of the study was to evaluate safety and efficacy of CFR/PEEK nails in the treatment of various pathological conditions. It was also investigated whatever radiolucency of this nails could lead to a more objective evaluation of bone callus or disease site.

Patients and methods

In the study group were included 20 patients (22 bone segments) who underwent CFR/PEEK nail implantation (eight humerus, one tibia, nine femur and four knee arthrodesis). They were affected by pathological fractures, and in four cases, they required an arthrodesis of the knee. They were retrospectively evaluated considering nail failures and bone callus or disease progression (RUSH scores). Mean follow-up time was 11 months (min 6.8–max 20.3). In the control group were included patients treated with titanium nails in the same institution for the same pathologies. An interclass correlation coefficient (ICC) analysis was performed in both groups considering RUSH scores by two expert surgeon from two institution to assess whether radiolucency could lead to a more objective evaluation of disease or bone callus site.

Results

The ICC of mean values between RUSH scores was 0.882 (IC 95%: 0.702–0.953) in the CFR/PEEK group, while it was 0.778 (IC 95%: 0.41–0.91) in the titanium group. Observers’ evaluation showed a significantly higher obscuration by titanium nails than by CFR/PEEK nails. No osteosynthesis failures were reported in both groups.

Conclusions

Our results confirm the safety of CFR/PEEK nails in the short–medium term. The radiolucency of these materials led our observers to perform more objective evaluations of bone callus formation or disease progression compared to the titanium group given the higher ICC.

Level of evidence: III Case–control therapeutic study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Akay M, Asian N (1995) An estimation of fatigue life for a carbon fibre/poly ether ether ketone hip joint prosthesis. Proc Inst Mech Eng 209(2):93–103. https://doi.org/10.1177/0956797614551162

    Article  CAS  Google Scholar 

  2. Allal AS, Richter M, Russo M, Rouzaud M, Dulguerov P, Kurtz JM (1998) Dose variation at bone/titanium interfaces using titanium hollow screw osseointegrating reconstruction plates. Int J Radiat Oncol Biol Phys 40(1):215–219. https://doi.org/10.1016/S0360-3016(97)00587-7

    Article  PubMed  CAS  Google Scholar 

  3. Augat P, Morgan EF, Lujan TJ, Macgillivray TJ, Cheung WH (2014) Imaging techniques for the assessment of fracture repair. Injury 45(SUPPL. 2):S16–S22. https://doi.org/10.1016/j.injury.2014.04.004

    Article  PubMed  Google Scholar 

  4. Bagheri ZS, El Sawi I, Bougherara H, Zdero R (2014) Biomechanical fatigue analysis of an advanced new carbon fiber/flax/epoxy plate for bone fracture repair using conventional fatigue tests and thermography. J Mech Behav Biomed Mater 35:27–38. https://doi.org/10.1016/j.jmbbm.2014.03.008

    Article  PubMed  CAS  Google Scholar 

  5. Baidya KP, Ramakrishna S, Rahman M, Ritchie A (2001) Quantitative radiographic analysis of fiber reinforced polymer composites. J Biomater Appl 15(3):279–289. https://doi.org/10.1106/BKLQ-E2YG-D2LA-RG3R

    Article  PubMed  CAS  Google Scholar 

  6. Bhandari M, Chiavaras M, Ayeni O, Chakraverrty R, Parasu N, Choudur H et al (2013) Assessment of radiographic fracture healing in patients with operatively treated femoral neck fractures. J Orthop Trauma 27(9):e213–e219. https://doi.org/10.1097/BOT.0b013e318282e692

    Article  PubMed  Google Scholar 

  7. Brockett CL, Carbone S, Fisher J, Jennings LM (2017) PEEK and CFR-PEEK as alternative bearing materials to UHMWPE in a fixed bearing total knee replacement: an experimental wear study. Wear 374–375:86–91. https://doi.org/10.1016/j.wear.2016.12.010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Brown SA, Hastings RS, Mason JJ, Moet A (1990) Characterization of short-fibre reinforced thermoplastics for fracture fixation devices. Biomaterials 11(8):541–547. https://doi.org/10.1016/0142-9612(90)90075-2

    Article  PubMed  CAS  Google Scholar 

  9. Caforio M, Perugia D, Colombo M, Calori GM, Maniscalco P (2014) Preliminary experience with Piccolo Composite™, a radiolucent distal fibula plate, in ankle fractures. Injury 45(S6):S36–S38. https://doi.org/10.1016/j.injury.2014.10.020

    Article  PubMed  Google Scholar 

  10. Chiavaras MM, Bains S, Choudur H, Parasu N, Jacobson J, Ayeni O et al (2013) The Radiographic Union Score for Hip (RUSH): the use of a checklist to evaluate hip fracture healing improves agreement between radiologists and orthopedic surgeons. Skelet Radiol 42(8):1079–1088. https://doi.org/10.1007/s00256-013-1605-8

    Article  Google Scholar 

  11. Diffo Kaze A, Maas S, Waldmann D, Zilian A, Dueck K, Pape D (2015) Biomechanical properties of five different currently used implants for open-wedge high tibial osteotomy. J Exp Orthop 2(1):14. https://doi.org/10.1186/s40634-015-0030-4

    Article  PubMed  PubMed Central  Google Scholar 

  12. Errani C, Bazzocchi A, Spinnato P, Facchini G, Campanacci L, Rossi G et al (2019) What’ s new in management of bone metastases? Eur J Orthop Surg Traumatol 29(7):1367–1375. https://doi.org/10.1007/s00590-019-02446-y

    Article  PubMed  Google Scholar 

  13. Errani C, Mavrogenis AF, Cevolani L, Spinelli S, Piccioli A, Maccauro G et al (2017) Treatment for long bone metastases based on a systematic literature review. Eur J Orthop Surg Traumatol 27(2):205–211

    Article  Google Scholar 

  14. Feerick EM, Kennedy J, Mullett H, FitzPatrick D, McGarry P (2013) Investigation of metallic and carbon fibre PEEK fracture fixation devices for three-part proximal humeral fractures. Med Eng Phys 35(6):712–722. https://doi.org/10.1016/j.medengphy.2012.07.016

    Article  PubMed  Google Scholar 

  15. Filippiadis D, Mavrogenis AF, Mazioti A (2017) Metastatic bone disease from breast cancer: a review of minimally invasive techniques for diagnosis and treatment. Eur J Orthop Surg Traumatol 27(6):729–736

    Article  Google Scholar 

  16. Fujihara K, Huang ZM, Ramakrishna S, Satknanantham K, Hamada H (2003) Performance study of braided carbon/PEEK composite compression bone plates. Biomaterials 24(15):2661–2667. https://doi.org/10.1016/S0142-9612(03)00065-6

    Article  PubMed  CAS  Google Scholar 

  17. Haque S, Siddiqui G (2011) Re: The invisible nail: a technique report of treatment of a pathological humerus fracture with a radiolucent intramedullary nail. Injury 42(11):1390–1391. https://doi.org/10.1016/j.injury.2011.05.026

    Article  PubMed  Google Scholar 

  18. Hillock R, Howard S (2014) Utility of carbon fiber implants in orthopedic surgery: literature review. Reconstruct Rev 4(1):23–32. https://doi.org/10.15438/rr.v4i1.55

    Article  Google Scholar 

  19. Howling GI, Sakoda H, Antonarulrajah A, Marrs H, Stewart TD, Appleyard S et al (2003) Biological response to wear debris generated in carbon based composites as potential bearing surfaces for artificial hip joints. J Biomed Mater Res Part B Appl Biomater 67(2):758–764. https://doi.org/10.1002/jbm.b.10068

    Article  PubMed  CAS  Google Scholar 

  20. Jockiseh KA, Brown SA, Bauer TW, Merritt K (1992) Biological response to chopped-carbon-fiber reinforced peek. J Biomed Mater Res 26:133–146

    Article  Google Scholar 

  21. Katthagen JC, Ellwein A, Lutz O, Voigt C, Lill H (2017) Outcomes of proximal humeral fracture fixation with locked CFR-PEEK plating. Eur J Orthop Surg Traumatol 27(3):351–358. https://doi.org/10.1007/s00590-016-1891-7

    Article  PubMed  Google Scholar 

  22. Koch KM, Hargreaves BA, Pauly KB, Chen W, Gold GE, King KF (2010) Magnetic resonance imaging near metal implants. J Magn Reson Imaging JMRI 32(4):773–787. https://doi.org/10.1002/jmri.22313

    Article  PubMed  CAS  Google Scholar 

  23. Koff MF, Shah P, Koch KM, Potter HG (2013) Quantifying image distortion of orthopedic materials in magnetic resonance imaging. J Magn Reson Imaging 38(3):610–618. https://doi.org/10.1002/jmri.23991

    Article  PubMed  Google Scholar 

  24. Kurtz SM, Devine JN (2007) PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials 28(32):4845–4869. https://doi.org/10.1016/j.biomaterials.2007.07.013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Li CS, Vannabouathong C, Sprague S, Bhandari M (2014) The use of carbon-fiber-reinforced (CFR) peek material in orthopedic implants: a systematic review. Clin Med Insights: Arthritis Musculoskel Disorders 8:33–45. https://doi.org/10.4137/CMAMD.S20354

    Article  Google Scholar 

  26. Lill H, Hepp P, Korner J, Kassi JP, Verheyden AP, Josten C, Duda GN (2003) Proximal humeral fractures: how stiff should an implant be? A comparative mechanical study with new implants in human specimens. Arch Orthop Trauma Surg 123(2–3):74–81. https://doi.org/10.1007/s00402-002-0465-9

    Article  PubMed  CAS  Google Scholar 

  27. Mavrogenis AF, Vottis C (2014) PEEK rod systems for the spine. Eur J Orthop Surg Traumatol 24:111–116

    Article  Google Scholar 

  28. Morshed S (2014) Current options for determining fracture union. Adv Med 2014:1–12. https://doi.org/10.1016/j.brainresrev.2006.12.007

    Article  CAS  Google Scholar 

  29. Piccioli A, Piana R, Lisanti M, Di Martino A, Rossi B, Camnasio F et al (2017) Carbon-fiber reinforced intramedullary nailing in musculoskeletal tumor surgery: a national multicentric experience of the Italian Orthopaedic Society (SIOT) Bone Metastasis Study Group. Injury 48:S55–S59. https://doi.org/10.1016/S0020-1383(17)30659-9

    Article  PubMed  Google Scholar 

  30. Postlethwaite KR, Philips JG, Booth S, Shaw J, Slater A (1989) The effects of small plate osteosynthesis on postoperative radiotherapy. Br J Oral Maxillofac Surg 27(5):375–378. https://doi.org/10.1016/0266-4356(89)90076-4

    Article  PubMed  CAS  Google Scholar 

  31. Schliemann B, Hartensuer R, Koch T, Theisen C, Raschke MJ, Kösters C, Weimann A (2015) Treatment of proximal humerus fractures with a CFR-PEEK plate: 2-year results of a prospective study and comparison to fixation with a conventional locking plate. J Shoulder Elbow Surg 24(8):1282–1288. https://doi.org/10.1016/j.jse.2014.12.028

    Article  PubMed  Google Scholar 

  32. Scholes SC, Unsworth A (2009) Wear studies on the likely performance of CFR-PEEK/CoCrMo for use as artificial joint bearing materials. J Mater Sci Mater Med 20(1):163–170. https://doi.org/10.1007/s10856-008-3558-3

    Article  PubMed  CAS  Google Scholar 

  33. Skinner HB (1988) Composite technology for total hip arthroplasty. Clin Orthop Relat Res 235:224–236. https://doi.org/10.1097/00003086-198810000-00022

    Article  CAS  Google Scholar 

  34. Stefano B, Tedesco G, Ming L, Ghermandi R, Amichetti M, Fossati P, Krengli M, Mavilla L, Gasbarrini A (2018) Carbon-fiber-reinforced PEEK fixation system in the treatment of spine tumors: a preliminary report. Eur Spine J 27(4):874–881

    Article  Google Scholar 

  35. Steinberg EL, Rath E, Shlaifer A, Chechik O, Maman E, Salai M (2012) Carbon fiber reinforced PEEK Optima-A composite material biomechanical properties and wear/debris characteristics of CF-PEEK composites for orthopedic trauma implants. J Mech Behav Biomed Mater 17:221–228. https://doi.org/10.1016/j.jmbbm.2012.09.013

    Article  PubMed  CAS  Google Scholar 

  36. Tarallo L, Mugnai R, Adani R, Zambianchi F, Catani F (2014) A new volar plate made of carbon-fiber-reinforced polyetheretherketon for distal radius fracture: analysis of 40 cases. J Orthop Traumatol 15(4):277–283. https://doi.org/10.1007/s10195-014-0311-1

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tedesco G, Gasbarrini A, Bandiera S, Ghermandi R, Boriani S (2017) Composite PEEK/Carbon fiber implants can increase the effectiveness of radiotherapy in the management of spine tumors. J Spine Surg 3(3):323–329. https://doi.org/10.21037/jss.2017.06.20

    Article  PubMed  PubMed Central  Google Scholar 

  38. Utzschneider S, Becker F, Grupp TM, Sievers B, Paulus A, Gottschalk O, Jansson V (2010) Inflammatory response against different carbon fiber-reinforced PEEK wear particles compared with UHMWPE in vivo. Acta Biomater 6(11):4296–4304. https://doi.org/10.1016/j.actbio.2010.06.002

    Article  PubMed  CAS  Google Scholar 

  39. Wilson WK, Morris RP, Ward AJ, Carayannopoulos NL, Panchbhavi VK (2015) Torsional failure of carbon fiber composite plates versus stainless steel plates for comminuted distal fibula fractures. Foot Ankle Int 37(5):548–553. https://doi.org/10.1177/1071100715625291

    Article  Google Scholar 

  40. Xin-Ye N, Xiao-Bin T, Chang-Ran G, Da C (2012) The prospect of carbon fiber implants in radiotherapy. J Appl Clin Med Phys 13(4):152–159. https://doi.org/10.1120/jacmp.v13i4.3821

    Article  PubMed Central  Google Scholar 

  41. Zimel MN, Hwang S, Riedel ER, Healey JH (2015) Carbon fiber intramedullary nails reduce artifact in postoperative advanced imaging. Skelet Radiol 44(9):1317–1325. https://doi.org/10.1007/s00256-015-2158-9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Sacchetti.

Ethics declarations

Conflict of interest

Each author certifies that he or she has no commercial associations (e.g. consultancies, stock ownership, equity interest, patent/licensing arrangements, etc.) that might pose a conflict of interest in connection with the submitted article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sacchetti, F., Andreani, L., Palazzuolo, M. et al. Carbon/PEEK nails: a case–control study of 22 cases. Eur J Orthop Surg Traumatol 30, 643–651 (2020). https://doi.org/10.1007/s00590-019-02602-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00590-019-02602-4

Keywords

Navigation