Skip to main content
Log in

Proximal humeral fractures: how stiff should an implant be?

A comparative mechanical study with new implants in human specimens

  • Original Article
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Background

The objective of this study was to determine the in vitro characteristics of the clinically used and newly developed implants for the stabilization of proximal humeral fractures under static and cyclic loading. The goal was to optimize implant stiffness for fracture stabilization even in weak bone stock.

Methods

In a laboratory study using 35 fresh human humeri, the specimens were randomized into 5 groups, which included the clinically used humerus T-plate (HTP), the cross-screw osteosynthesis (CSO), the unreamed proximal humerus nail with spiral blade (UHN), the recently developed Synclaw Proximal Humerus Nail (Synclaw PHN) and the angle-stable Locking Compression Plate Proximal Humerus (LCP-PH). The implant stiffness was determined for three clinically relevant load cases: axial compression, torsion and varus bending. In addition, a cyclic varus-bending test was performed to determine the implant properties under cyclic loading.

Results

In contrast to a rather elastic and minimally invasive implant(LCP-PH), the conventionally designed ones (Synclaw PHN, CSO, HTP, UHN) showed rather high stiffness values under static loading. In cyclic loading, a strong decrease in stiffness (p<0.05) was found for the rigid implants HTP and UHN. In comparison with the other implants, only the elastic implant (LCP-PH) showed a significantly lower load reduction in a weak bone stock (17±6.2%).

Conclusion

The high initial stiffness of rigid implants led to an early loosening and failure of the implant-bone interface under cyclic loading. Implants with low stiffness and elastic characteristics, however, appear to minimize the peak stresses at the bone-implant interface, making them particularly suitable for fracture fixation in osteoporotic bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6a–c.
Fig. 7a–d.

Similar content being viewed by others

References

  1. Blum J, Rommens PM, Janzing H, Langendorff HS (1998) Retrograde Nagelung von Humerusschaftfrakturen mit dem UHN. Eine internationale multizentrische Studie. Unfallchirurg 101:342–352

    Article  CAS  PubMed  Google Scholar 

  2. Blum J, Machemer H, Hogner M, Baumgart F et al (2000) Biomechanik der Verriegelungsmarknagelung bei Oberarmschaftfrakturen. Vergleichsuntersuchung zweier Marknagelsysteme und des Effekts der interfragmentären Kompression beim unaufgebohrten Humerusnagel. Unfallchirurg 103:183–190

    Article  CAS  PubMed  Google Scholar 

  3. Dalton JE, Salkeld SL, Satterwhite YE, Cook SD (1993) A biomechanical comparison of intramedullary nailing systems for the humerus. J Orthop Trauma 7:367–374

    CAS  PubMed  Google Scholar 

  4. Duda GN, Kirchner H, Wilke HJ, Claes L (1998) A method to determine the 3-D stiffness of fracture fixation devices and its application to predict inter-fragmentary movement. J Biomech 31:247–252

    Article  CAS  PubMed  Google Scholar 

  5. Henley MB, Monroe M, Tencer AF (1991) Biomechanical comparison of methods of fixation of a midshaft osteotomy of the humerus. J Orthop Trauma 5:14–20

    CAS  PubMed  Google Scholar 

  6. Instrum K, Fennell C, Shrive N, Damson E et al (1998) Semitubular blade plate fixation in proximal humeral fractures: a biomechanical study in a cadaveric model. J Shoulder Elbow Surg 7:462–466

    CAS  PubMed  Google Scholar 

  7. Koval KJ, Blair B, Takei R, Kummer FJ, Zuckerman JD (1996) Surgical neck fractures of the proximal humerus: a laboratory evaluation of ten fixation techniques. J Trauma 40:778–783

    CAS  PubMed  Google Scholar 

  8. Koval KJ, Gallagher MA, Marsicano JG, Cuomo F et al (1997) Functional outcome after minimally displaced fractures of the proximal part of the humerus. J Bone Joint Surg Am 79:203–207

    CAS  PubMed  Google Scholar 

  9. Lill H, Giers R, Schmidt A, Echtermeyer V (1996) Die dislozierte subkapitale Humerusfraktur. Operative Behandlung mit einer modifizierten Kirschner-Drahttechnik. Chir Praxis 50:427–438

    Google Scholar 

  10. Lill H, Lange K, Prasse-Badde J, Schmidt A et al (1997) Die T-Platten-Osteosynthese bei dislozierten proximalen Humerusfrakturen. Unfallchirurgie 23:183–192

    CAS  PubMed  Google Scholar 

  11. Lill H, Korner J, Glasmacher S, Verheyden P et al (2001) Die gekreuzte Schraubenosteosynthese proximaler Humerusfrakturen. Unfallchirurg (in press)

  12. Müller ME, Allgöwer M, Schneider R, Willenberger H (1992) Manual der Osteosynthese. Springer, Berlin Heidelberg New York

  13. Naidu SH, Bixler B, Capo JT, Moulton MJ, Radin A (1997) Percutaneous pinning of proximal humerus fractures: a biomechanical study. Orthopedics 20:1073–1076

    CAS  PubMed  Google Scholar 

  14. Rajesh MB, Manning P, Neumann L, Parry M, Wallace WA (2000) The effect of bone quality on intra-medullary fixation of the proximal humerus using a retrograde nail. Osteoporosis Int 11:45

    Google Scholar 

  15. Ruch DS, Glisson RR, Marr AW, Russell GB, Nunley JA (2000) Fixation of three-part proximal humeral fractures: a biomechanical evaluation. J Orthop Trauma 14:36–40

    Article  CAS  PubMed  Google Scholar 

  16. Sehr JR, Szabo RM (1988) Semitubular blade plate for fixation in the proximal humerus. J Orthop Trauma 2:327–332

    CAS  PubMed  Google Scholar 

  17. Verheyden P, Streidt A, Lill H, Weise K, Josten C (1998) Der unaufgebohrte Humerusnagel—Indikationen, Technik und klinische Erfahrungen. Akt Traumatol 28:251–257

    Google Scholar 

  18. Weinstein DM, Gomez MA, Hawkins RJ (1994) Biomechanical comparison of tension-band wiring versus plating in the fixation of three-part fractures of the proximal humerus. Orthop Trans 18:3

    Google Scholar 

  19. Wheeler DL, Colville MR (1997) Biomechanical comparison of intramedullary and percutaneous pin fixation for proximal humeral fracture fixation. J Orthop Trauma 11:363–367

    Article  CAS  PubMed  Google Scholar 

  20. Williams GR Jr, Copley LA, Iannotti JP, Lisser SP (1997) The influence of intramedullary fixation on figure-of-eight wiring for surgical neck fractures of the proximal humerus: a biomechanical comparison. J Shoulder Elbow Surg 6:423–428

    PubMed  Google Scholar 

  21. Zimmerman MC, Waite AM, Deehan M, Tovey J, Oppenheim W (1994) A biomechanical analysis of four humeral fracture fixation systems. J Orthop Trauma 8:233–239

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Prof. Reinhard Vock (†) from the Department of Forensic Medicine and Prof. Christian Wittekind from the Department of Pathology of the University of Leipzig, Germany, and Jan-Eric Hoffmann for support in mechanical testing. This study was supported by a grant of the Robert Mathys Foundation, Switzerland, and the Richard Maatz grant 1999 of the Gerhard Küntscher Society, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Lill.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lill, H., Hepp, P., Korner, J. et al. Proximal humeral fractures: how stiff should an implant be?. Arch Orthop Trauma Surg 123, 74–81 (2003). https://doi.org/10.1007/s00402-002-0465-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-002-0465-9

Keywords

Navigation