Skip to main content
Log in

Global malalignment in adolescent idiopathic scoliosis: the axial deformity is the main driver

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the global alignment of non-operated subjects with adolescent idiopathic scoliosis.

Method

A total of 254 subjects with AIS and 64 controls underwent low dose biplanar X-rays and had their spine, pelvis, and rib cage reconstructed in 3D. Global alignment was measured in the sagittal and frontal planes by calculating the OD-HA angle (between C2 dens to hip axis with the vertical). Subjects with AIS were classified as malaligned if the OD-HA was > 95th percentile relative to controls.

Results

The sagittal OD-HA in AIS remained within the normal ranges. In the frontal plane, 182 AIS were normally aligned (Group 1, OD-HA = 0.9°) but 72 were malaligned (Group 2, OD-HA = 2.9°). Group 2 had a more severe spinal deformity in the frontal and horizontal planes compared to Group 1 (Cobb: 42 ± 16° vs. 30 ± 18°; apical vertebral rotation AVR: 19 ± 10° vs. 12 ± 7°, all p < 0.05). Group 2 subjects were mainly classified as Lenke 5 or 6. 19/72 malaligned subjects had a mild deformity (Cobb < 30°) but a progressive scoliosis (severity index ≥ 0.6). The frontal OD-HA angle was found to be mainly determined (adjusted-R2 = 0.22) by the apical vertebral rotation and secondarily by the Lenke type.

Conclusions

This study showed that frontal malalignment is more common in distal major structural scoliosis and its main driver is the apical vertebral rotation. This highlights the importance of monitoring the axial plane deformity in order to avoid worsening of the frontal global alignment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Duval-Beaupere G (1970) Maturation indices in the surveillance of scoliosis. Rev Chir Orthop Reparatrice Appar Mot 56:59–76

    CAS  PubMed  Google Scholar 

  2. Gauchard GC, Lascombes P, Kuhnast M, Perrin PP (2001) Influence of different types of progressive idiopathic scoliosis on static and dynamic postural control. Spine (Phila Pa 1976) 26 1052–1058. doi: https://doi.org/10.1097/00007632-200105010-00014

  3. Haumont T, Gauchard GC, Lascombes P, Perrin PP (2011) Postural instability in early-stage idiopathic scoliosis in adolescent girls. Spine (Phila Pa 1976). doi: https://doi.org/10.1097/BRS.0b013e3181ff5837

  4. Stylianides GA, Dalleau G, Begon M et al (2013) Pelvic morphology, body posture and standing balance characteristics of adolescent able-bodied and idiopathic scoliosis girls. PLoS ONE 8:1–6. https://doi.org/10.1371/journal.pone.0070205

    Article  CAS  Google Scholar 

  5. Dubousset J (2011) Reflections of an orthopaedic surgeon on patient care and research into the condition of scoliosis. J Pediatr Orthop 31:1–8. https://doi.org/10.1097/BPO.0b013e3181f73beb

    Article  Google Scholar 

  6. Le Huec JC, Gille O, Fabre T (2018) Sagittal balance and spine-pelvis relation: a French speciality? Orthop Traumatol Surg Res 104:551–554. https://doi.org/10.1016/j.otsr.2018.06.001

    Article  PubMed  Google Scholar 

  7. Barrey C, Roussouly P, Le Huec J-C et al (2013) Compensatory mechanisms contributing to keep the sagittal balance of the spine. Eur Spine J 22:834–841. https://doi.org/10.1007/s00586-013-3030-z

    Article  PubMed Central  Google Scholar 

  8. Kubat O, Ovadia D (2020) Frontal and sagittal imbalance in patients with adolescent idiopathic deformity. Ann Transl Med 8:29–29. https://doi.org/10.21037/atm.2019.10.49

    Article  PubMed  PubMed Central  Google Scholar 

  9. Souder C, Newton PO, Shah SA et al (2017) Factors in surgical decision making for thoracolumbar/lumbar AIS: it’s about more than just the curve magnitude. J Pediatr Orthop 37:e530–e535. https://doi.org/10.1097/BPO.0000000000000746

    Article  PubMed  Google Scholar 

  10. Fortin C, Grunstein E, Labelle H et al (2016) Trunk imbalance in adolescent idiopathic scoliosis. Spine J 16:687–693. https://doi.org/10.1016/j.spinee.2016.02.033

    Article  PubMed  Google Scholar 

  11. Pan-pan H, Miao Y, Xiao-guang L et al (2018) How does the sagittal spinal balance of the scoliotic population deviate from the asymptomatic population? BMC Musculoskelet Disord 19:36. https://doi.org/10.1186/s12891-018-1954-5

    Article  Google Scholar 

  12. Roussouly P, Labelle H (2013) Pre- and post-operative sagittal balance in idiopathic scoliosis : a comparison over the ages of two cohorts of 132 adolescents and 52 adults. European Spine J. https://doi.org/10.1007/s00586-012-2571-x

    Article  Google Scholar 

  13. Vital JM, Senegas J (1986) Anatomical bases of the study of the constraints to which the cervical spine is subject in the sagittal plane A study of the center of gravity of the head. Surg Radiol Anat 8:169–173. https://doi.org/10.1007/BF02427845

    Article  CAS  PubMed  Google Scholar 

  14. Illés TS, Burkus M, Somoskeőy S et al (2017) The horizontal plane appearances of scoliosis: what information can be obtained from top-view images? Int Orthop 41:2303–2311. https://doi.org/10.1007/s00264-017-3548-5

    Article  PubMed  Google Scholar 

  15. Steffen JS, Obeid I, Aurouer N et al (2010) 3D postural balance with regard to gravity line: an evaluation in the transversal plane on 93 patients and 23 asymptomatic volunteers. Eur Spine J 19:760–767. https://doi.org/10.1007/s00586-009-1249-5

    Article  PubMed  Google Scholar 

  16. Sugrue PA, Mcclendon J, Smith TR et al (2013) Redefining global spinal balance normative values of cranial center of mass from a prospective cohort of asymptomatic individuals. Spine 38:484–489. https://doi.org/10.1097/BRS.0b013e318273a1c0

    Article  PubMed  Google Scholar 

  17. Amabile C, Pillet H, Lafage V et al (2016) A new quasi-invariant parameter characterizing the postural alignment of young asymptomatic adults. Eur Spine J. https://doi.org/10.1007/s00586-016-4552-y

    Article  PubMed  Google Scholar 

  18. Amabile C, Le Huec J-C, Skalli W (2016) Invariance of head-pelvis alignment and compensatory mechanisms for asymptomatic adults older than 49 years. Eur Spine J. https://doi.org/10.1007/s00586-016-4830-8

    Article  PubMed  Google Scholar 

  19. Faro FD, Marks MC, Pawelek J, Newton PO (2004) Evaluation of a functional position for lateral radiograph acquisition in adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 29:2284–2289. doi: 00007632–200410150–00017

  20. Chaibi Y, Cresson T, Aubert B et al (2012) Fast 3D reconstruction of the lower limb using a parametric model and statistical inferences and clinical measurements calculation from biplanar X-rays. Comput Methods Biomech Biomed Engin 15:457–466. https://doi.org/10.1080/10255842.2010.540758

    Article  CAS  PubMed  Google Scholar 

  21. Humbert L, De Guise JA, Godbout B et al (2009) Fast 3D reconstruction of the spine from biplanar radiography: a diagnosis tool for routine scoliosis diagnosis and research in biomechanics. Comput Methods Biomech Biomed Engin 12:151–163. https://doi.org/10.1080/10255840903081222

    Article  Google Scholar 

  22. Lenke LG, Betz RR, Harms J et al (2001) Adolescent idiopathic scoliosis: a new classification to determine extent of spinal arthrodesis. J Bone Joint Surg Am 83:1169–81. https://doi.org/10.1097/00007632-200101010-00009

    Article  CAS  PubMed  Google Scholar 

  23. Abelin-Genevois K, Sassi D, Verdun S, Roussouly P (2018) Sagittal classification in adolescent idiopathic scoliosis: original description and therapeutic implications. Eur Spine J 27:2192–2202. https://doi.org/10.1007/s00586-018-5613-1

    Article  CAS  PubMed  Google Scholar 

  24. Jackson RP, McManus AC (1994) Radiographic analysis of sagittal plane alignment and balance in standing volunteers and patients with low back pain matched for age, sex, and size: a prospective controlled clinical study. Spine (Phila Pa 1976) 19 1611–1618

  25. Vialle R, Levassor N, Rillardon L et al (2005) Radiographic analysis of the sagittal alignment and balance of the Spine. Methods. https://doi.org/10.2106/JBJS.D.02043

    Article  Google Scholar 

  26. Lafage V, Schwab F, Patel A, et al (2009) Pelvic tilt and truncal inclination: two key radiographic parameters in the setting of adults with spinal deformity. Spine (Phila Pa 1976) 34 E599–E606. doi: https://doi.org/10.1097/BRS.0b013e3181aad219

  27. Le Huec J-C, Aunoble S, Leijssen P, Pellet N (2011) Pelvic parameters: origin and significance. Eur Spine J 20:564–571. https://doi.org/10.1007/s00586-011-1940-1

    Article  PubMed  PubMed Central  Google Scholar 

  28. Salameh M, Bizdikian AJ, Saad E et al (2021) Reliability assessment of cervical spine parameters measured on full-body radiographs in asymptomatic subjects and patients with spinal deformity. Orthop Traumatol Surg Res. https://doi.org/10.1016/J.OTSR.2021.103026

    Article  PubMed  Google Scholar 

  29. Justin K. scheer, B.s. 1, Jessica a. tang, B.s. 1, Justin s. smith, m.D., Ph.D. 2, et al (2013) Cervical spine alignment, sagittal deformity, and clinical implications : A review. J Neurosurg Spine 19:141–159. doi: https://doi.org/10.3171/2013.4.SPINE12838

  30. Diebo BG, Challier V, Henry JK, et al (2016) Predicting cervical alignment required to maintain horizontal gaze based on global spinal alignment. Spine (Phila Pa 1976) 41 1795–1800. doi: https://doi.org/10.1097/BRS.0000000000001698

  31. Yu M, Zhao WK, Li M et al (2015) Analysis of cervical and global spine alignment under roussouly sagittal classification in Chinese cervical spondylotic patients and asymptomatic subjects. Eur Spine J 24:1265–1273. https://doi.org/10.1007/s00586-015-3832-2

    Article  PubMed  Google Scholar 

  32. Lee S, Kim K, Seo E et al (2012) The influence of thoracic inlet alignment on the craniocervical sagittal balance in asymptomatic adults. J spinal Disord Tech 25:E41–E47. https://doi.org/10.1097/BSD.0b013e3182396301

    Article  PubMed  Google Scholar 

  33. Skalli W, Vergari C, Ebermeyer E et al (2017) Early detection of progressive adolescent idiopathic scoliosis: a severity index. Spine (Phila Pa 1976) 42 823–830. doi: https://doi.org/10.1097/BRS.0000000000001961

  34. Pietton R, Bouloussa H, Vergari C et al (2020) Rib cage measurement reproducibility using biplanar stereoradiographic 3D reconstructions in adolescent idiopathic scoliosis. J Pediatr Orthop 40:36–41. https://doi.org/10.1097/BPO.0000000000001095

    Article  PubMed  Google Scholar 

  35. Assi A, Karam M, Skalli W, Vergari C (2021) P RIMARY R ESEARCH A Novel Classification of 3D Rib Cage Deformity in Subjects With Adolescent Idiopathic Scoliosis. 00:1–11

  36. Al-Aubaidi Z, Lebel D, Oudjhane K, Zeller R (2013) Three-dimensional imaging of the spine using the EOS system: is it reliable? A comparative study using computed tomography imaging. J Pediatr Orthop B 22:409–412. https://doi.org/10.1097/BPB.0b013e328361ae5b

    Article  PubMed  Google Scholar 

  37. Kato S, Debaud C, Zeller RD (2017) Three-dimensional EOS analysis of apical vertebral rotation in adolescent idiopathic scoliosis. J Pediatr Orthop 37:e543–e547. https://doi.org/10.1097/BPO.0000000000000776

    Article  PubMed  Google Scholar 

  38. Vergari C, Courtois I, Ebermeyer E et al (2019) Head to pelvis alignment of adolescent idiopathic scoliosis patients both in and out of brace. Eur Spine J 28:1286–1295. https://doi.org/10.1007/s00586-019-05981-8

    Article  PubMed  Google Scholar 

  39. Alzakri A, Vergari C, Van den Abbeele M et al (2019) Global sagittal alignment and proximal junctional kyphosis in adolescent idiopathic scoliosis. Spine Deform 7:236–244. https://doi.org/10.1016/j.jspd.2018.06.014

    Article  PubMed  Google Scholar 

  40. Mac-Thiong J-M, Labelle H, Charlebois M, et al (2003) Sagittal plane analysis of the spine and pelvis in adolescent idiopathic scoliosis according to the coronal curve type. Spine (Phila Pa 1976) 28 1404–9. doi: https://doi.org/10.1097/01.BRS.0000067118.60199.D1

  41. Akbar M, Almansour H, Lafage R et al (2018) Sagittal alignment of the cervical spine in the setting of adolescent idiopathic scoliosis. J Neurosurg Spine 29:506–514. https://doi.org/10.3171/2018.3.SPINE171263

    Article  PubMed  Google Scholar 

  42. Hiyama A, Sakai D, Watanabe M et al (2016) Sagittal alignment of the cervical spine in adolescent idiopathic scoliosis: a comparative study of 42 adolescents with idiopathic scoliosis and 24 normal adolescents. Eur Spine J 25:3226–3233. https://doi.org/10.1007/s00586-016-4701-3

    Article  PubMed  Google Scholar 

  43. Hu J, Qian B, ping, Qiu Y, et al (2017) Can acetabular orientation be restored by lumbar pedicle subtraction osteotomy in ankylosing spondylitis patients with thoracolumbar kyphosis? Eur Spine J 26:1826–1832. https://doi.org/10.1007/s00586-016-4709-8

    Article  PubMed  Google Scholar 

  44. Wang L, Liu X (2017) Cervical sagittal alignment in adolescent idiopathic scoliosis patients (Lenke type 1–6). J Orthop Sci 22:254–259. https://doi.org/10.1016/j.jos.2016.12.006

    Article  PubMed  Google Scholar 

  45. Pesenti S, Blondel B, Peltier E et al (2016) Interest of T1 parameters for sagittal alignment evaluation of adolescent idiopathic scoliosis patients. Eur Spine J 25:424–429. https://doi.org/10.1007/s00586-015-4244-z

    Article  CAS  PubMed  Google Scholar 

  46. Chen RQ, Watanabe K, Hosogane N et al (2013) Spinal coronal profiles and proximal femur bone mineral density in adolescent idiopathic scoliosis. Eur Spine J 22:2433–2437. https://doi.org/10.1007/s00586-013-2872-8

    Article  PubMed  PubMed Central  Google Scholar 

  47. Labaki C, Otayek J, Massaad A et al (2019) Is the apical vertebra the most rotated vertebra in the scoliotic curve? J Neurosurg Spine. https://doi.org/10.3171/2019.6.SPINE19203

    Article  PubMed  Google Scholar 

  48. STOKES IAF, BIGALOW LC, MORELAND MS (1986) Measurement of Axial Rotation of Vertebrae in Scoliosis. Spine (Phila Pa 1976) 11 213–218. doi: https://doi.org/10.1097/00007632-198604000-00006

Download references

Acknowledgements

This research was funded by the University of Saint-Joseph (grant FM300). The funding sources did not intervene in study design; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the article for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayman Assi.

Ethics declarations

Conflict of interest

MK, IG, CV, NK, MS, CC, AR, EA, MF, EJ, ES, KK, WS and AA declare that they have no conflict of interest related to this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karam, M., Ghanem, I., Vergari, C. et al. Global malalignment in adolescent idiopathic scoliosis: the axial deformity is the main driver. Eur Spine J 31, 2326–2338 (2022). https://doi.org/10.1007/s00586-021-07101-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-021-07101-x

Keywords

Navigation