Skip to main content
Log in

“Ectomycorrhizal exploration type” could be a functional trait explaining the spatial distribution of tree symbiotic fungi as a function of forest humus forms

  • Research
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Summary

In European forests, most tree species form symbioses with ectomycorrhizal (EM) and arbuscular mycorrhizal (AM) fungi. The EM fungi are classified into different morphological types based on the development and structure of their extraradical mycelium. These structures could be root extensions that help trees to acquire nutrients. However, the relationship between these morphological traits and functions involved in soil nutrient foraging is still under debate.

We described the composition of mycorrhizal fungal communities under 23 tree species in a wide range of climates and humus forms in Europe and investigated the exploratory types of EM fungi. We assessed the response of this tree extended phenotype to humus forms, as an indicator of the functioning and quality of forest soils. We found a significant relationship between the relative proportion of the two broad categories of EM exploration types (short- or long-distance) and the humus form, showing a greater proportion of long-distance types in the least dynamic soils. As past land-use and host tree species are significant factors structuring fungal communities, we showed this relationship was modulated by host trait (gymnosperms versus angiosperms), soil depth and past land use (farmland or forest).

We propose that this potential functional trait of EM fungi be used in future studies to improve predictive models of forest soil functioning and tree adaptation to environmental nutrient conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abarenkov K, Nilsson RH, Larsson K-H, Alexander IJ, Eberhardt U, Erland S, Høiland K, Kjøller R, Larsson E, Pennanen T et al (2010) The UNITE database for molecular identification of fungi – recent updates and future perspectives. New Phytol 186:281–285

    Article  PubMed  Google Scholar 

  • Agerer R (2001) Exploration types of ectomycorrhizae. Mycorrhiza 11:107–114

    Article  Google Scholar 

  • Agerer R (2006) Fungal relationships and structural identity of their ectomycorrhizae. Mycological Progress 5:67–107

    Article  Google Scholar 

  • Agerer R, Rambold G (2004–2024) DEEMY: an information system for characterization and determination of Ectomycorrhizae. https://www.deemy.de. München, Germany (first posted on 2004-06-01; most recent update: 2011-01-10)

  • Anderson IC, Genney DR, Alexander IJ (2014) Fine-scale diversity and distribution of ectomycorrhizal fungal mycelium in a scots pine forest. New Phytol 201:1423–1430

    Article  CAS  PubMed  Google Scholar 

  • Auer L, Buée M, Fauchery L, Lombard V, Barry KW, Clum A, Martin FM (2023) Metatranscriptomics sheds light on the links between the functional traits of fungal guilds and ecological processes in forest soil ecosystems. New Phytol. https://doi.org/10.1111/nph.19471)

    Article  PubMed  Google Scholar 

  • Augusto L, Davies TJ, Delzon S, De Schrijver A (2014) The enigma of the rise of angiosperms: can we untie the knot? Ecol Lett 17:1326–1338

    Article  CAS  PubMed  Google Scholar 

  • Baldrian P (2017) Forest microbiome: diversity, complexity and dynamics. FEMS Microbiol Rev 41:109–130

    CAS  PubMed  Google Scholar 

  • Balesdent J, Basile-Doelsch I, Chadoeuf J, Cornu S, Derrien D, Fekiacova Z, Hatté C (2018) Atmosphere–soil carbon transfer as a function of soil depth. Nature 559:599–602

    Article  CAS  PubMed  Google Scholar 

  • Barbi F, Prudent E, Vallon L, Buee M, Dubost A, Legout A, Marmeisse R, Fraissinet-Tachet L, Luis P (2016) Tree species select diverse soil fungal communities expressing different sets of lignocellulolytic enzyme-encoding genes. Soil Biol Biochem 100:149–159

    Article  CAS  Google Scholar 

  • Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Annals Stat 29:1165–1188

    Article  Google Scholar 

  • Brethes A, Brun JJ, Jabiol B, Ponge J, Toutain F (1995) Classification of forest humus forms: a French proposal. Ann Des Sci Forestières 52:535–546

    Article  Google Scholar 

  • Brundrett MC, Tedersoo L (2018) Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol 220:1108–1115

    Article  PubMed  Google Scholar 

  • Buée M, Courty PE, Mignot D, Garbaye J (2007) Soil niche effect on species diversity and catabolic activities in an ectomycorrhizal fungal community. Soil Biol Biochem 39:1947–1955

    Article  Google Scholar 

  • Cairney JWG (1992) Translocation of solutes in ectomycorrhizal and saprotrophic rhizomorphs. Mycol Res 96:135–141

    Article  CAS  Google Scholar 

  • Castaño C, Suarez-Vidal E, Zas R, Bonet JA, Oliva J, Sampedro L (2023) Ectomycorrhizal fungi with hydrophobic mycelia and rhizomorphs dominate in young pine trees surviving experimental drought stress. Soil Biol Biochem 178:108932

    Article  Google Scholar 

  • Chaudhary VB, Holland EP, Charman-Anderson S, Guzman A, Bell-Dereske L, Cheeke TE, Corrales A, Duchicela J, Egan C, Gupta MM et al (2022) What are mycorrhizal traits? Trends Ecol Evol 37:573–581

    Article  PubMed  Google Scholar 

  • Chen W, Koide RT, Adams TS, DeForest JL, Cheng L, Eissenstat DM (2016) Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees. Proceedings of the National Academy of Sciences 113: 8741–8746

  • Compton JE, Boone RD (2000) Long-term impacts of Agriculture on Soil Carbon and Nitrogen in New England forests. Ecology 81:2314–2330

    Article  Google Scholar 

  • Cox F, Barsoum N, Lilleskov EA, Bidartondo MI (2010) Nitrogen availability is a primary determinant of conifer mycorrhizas across complex environmental gradients. Ecol Lett 13:1103–1113

    Article  PubMed  Google Scholar 

  • Dambrine E, Dupouey J-L, Laüt L, Humbert L, Thinon M, Beaufils T, Richard H (2007) Present Forest Biodiversity Patterns in France related to former roman agriculture. Ecology 88:1430–1439

    Article  CAS  PubMed  Google Scholar 

  • Davison J, Vasar M, Sepp SK, Oja J, Al-Quraishy S, Bueno CG, Zobel M, Ecology et al (2022) https://doi.org/10.1002/ecy.3761

  • Defrenne CE, Philpott TJ, Guichon SHA, Roach WJ, Pickles BJ, Simard SW (2019) Shifts in Ectomycorrhizal Fungal communities and Exploration types relate to the Environment and Fine-Root Traits Across Interior Douglas-Fir Forests of Western Canada. Front Plant Sci 10

  • Diedhiou AG, Dupouey J-L, Buée M, Dambrine E, Laüt L, Garbaye J (2009) Response of ectomycorrhizal communities to past roman occupation in an oak forest. Soil Biol Biochem 41:2206–2213

    Article  CAS  Google Scholar 

  • Dupouey JL, Dambrine E, Laffite JD, Moares C (2002) Irreversible impact of Past Land Use on Forest Soils and Biodiversity. Ecology 83:2978–2984

    Article  Google Scholar 

  • Ekblad A, Wallander H, Godbold DL, Cruz C, Johnson D, Baldrian P, Björk RG, Epron D, Kieliszewska-Rokicka B, Kjøller R et al (2013) The production and turnover of extramatrical mycelium of ectomycorrhizal fungi in forest soils: role in carbon cycling. Plant Soil 366:1–27

    Article  CAS  Google Scholar 

  • Escudié F, Auer L, Bernard M, Mariadassou M, Cauquil L, Vidal K, Maman S, Hernandez-Raquet G, Combes S, Pascal G (2018) FROGS: find, rapidly, OTUs with Galaxy Solution. Bioinformatics 34:1287–1294

    Article  PubMed  Google Scholar 

  • Fernandez M, Vernay A, Henneron L, Adamik L, Malagoli P, Balandier P (2022) Plant N economics and the extended phenotype: integrating the functional traits of plants and associated soil biota into plant–plant interactions. J Ecol 110:2015–2032

    Article  Google Scholar 

  • Finlay RD, Read DJ (1986) The structure and function of the vegetative mycelium of Ectomycorrhizal plants. New Phytol 103:157–165

    Article  Google Scholar 

  • Franklin O, Näsholm T, Högberg P, Högberg MN (2014) Forests trapped in nitrogen limitation – an ecological market perspective on ectomycorrhizal symbiosis. New Phytol 203:657–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes - application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  CAS  PubMed  Google Scholar 

  • Genney DR, Anderson IC, Alexander IJ (2006) Fine-scale distribution of pine ectomycorrhizas and their extramatrical mycelium. New Phytol 170:381–390

    Article  PubMed  Google Scholar 

  • Guo W, Ding J, Wang Q, Yin M, Zhu X, Liu Q, Zhang Z, Yin H (2021) Soil fertility controls ectomycorrhizal mycelial traits in alpine forests receiving nitrogen deposition. Soil Biol Biochem 161:108386

    Article  CAS  Google Scholar 

  • Hobbie EA, Agerer R (2010) Nitrogen isotopes in ectomycorrhizal sporocarps correspond to belowground exploration types. Plant Soil 327:71–83

    Article  CAS  Google Scholar 

  • Hobbie EA, Colpaert JV (2003) Nitrogen availability and colonization by mycorrhizal fungi correlate with nitrogen isotope patterns in plants. New Phytol 157:115–126

    Article  CAS  PubMed  Google Scholar 

  • Hobbie EA, Bendiksen K, Thorp NR, Ohenoja E, Ouimette AP (2022) Climate records, isotopes, and C: N stoichiometry reveal carbon and nitrogen flux dynamics differ between functional groups of ectomycorrhizal fungi. Ecosystems 25:1207–1217

    Article  CAS  Google Scholar 

  • Högberg P (2007) Nitrogen impacts on forest carbon. Nature 447:781–782

    Article  PubMed  Google Scholar 

  • Jangid K, Williams MA, Franzluebbers AJ, Schmidt TM, Coleman DC, Whitman WB (2011) Land-use history has a stronger impact on soil microbial community composition than aboveground vegetation and soil properties. Soil Biol Biochem 43:2184–2193

    Article  CAS  Google Scholar 

  • Jörgensen K, Clemmensen KE, Wallander H, Lindahl BD (2023) Do ectomycorrhizal exploration types reflect mycelial foraging strategies? New Phytol 237:576–584

    Article  PubMed  Google Scholar 

  • Jussy JH, Koerner W, Dambrine E, Dupouey JL, Benoit M (2002) Influence of former agricultural land use on net nitrate production in forest soils. Eur J Soil Sci 53:367–374

    Article  CAS  Google Scholar 

  • Khokon AM, Janz D, Polle A (2023) Ectomycorrhizal diversity, taxon-specific traits and root N uptake in temperate beech forests. New Phytol 239:739–751

    Article  CAS  PubMed  Google Scholar 

  • Kjøller R, Nilsson L-O, Hansen K, Schmidt IK, Vesterdal L, Gundersen P (2012) Dramatic changes in ectomycorrhizal community composition, root tip abundance and mycelial production along a stand-scale nitrogen deposition gradient. New Phytol 194:278–286

    Article  PubMed  Google Scholar 

  • Klavina D, Tedersoo L, Agan A, Adamson K, Bitenieks K, Gaitnieks T, Drenkhan R (2022) Soil fungal communities in young Norway spruce-dominant stands: footprints of former land use and selective thinning. Eur J for Res 141:503–516

    Article  CAS  Google Scholar 

  • Kluting K, Clemmensen K, Jonaitis S, Vasaitis R, Holmström S, Finlay R, Rosling A (2019) Distribution patterns of fungal taxa and inferred functional traits reflect the non-uniform vertical stratification of soil microhabitats in a coastal pine forest. FEMS Microbiol Ecol 95:fiz149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koerner W, Dupouey JL, Dambrine E, Benoit M (1997) Influence of Past Land Use on the vegetation and soils of Present Day forest in the Vosges Mountains, France. J Ecol 85:351–358

    Article  Google Scholar 

  • Koide RT, Fernandez C, Malcolm G (2014) Determining place and process: functional traits of ectomycorrhizal fungi that affect both community structure and ecosystem function. New Phytol 201:433–439

    Article  PubMed  Google Scholar 

  • Kranabetter JM, Friesen J, Gamiet S, Kroeger P (2009) Epigeous fruiting bodies of ectomycorrhizal fungi as indicators of soil fertility and associated nitrogen status of boreal forests. Mycorrhiza 19:535–548

    Article  CAS  PubMed  Google Scholar 

  • Kranabetter JM, Hawkins BJ, Jones MD, Robbins S, Dyer T, Li T (2015) Species turnover (β-diversity) in ectomycorrhizal fungi linked to uptake capacity. Mol Ecol 24:5992–6005

    Article  CAS  PubMed  Google Scholar 

  • Lajoie G, Kembel SW (2019) Making the most of trait-based approaches for Microbial Ecology. Trends Microbiol 27:814–823

    Article  CAS  PubMed  Google Scholar 

  • Lalanne A, Bardat J, Lalanne-Amara F, Ponge J-F (2010) Local and regional trends in the ground vegetation of beech forests. Flora - Morphology, Distribution, Functional Ecology of Plants 205: 484–498

  • Lee SJ, Morse D, Hijri M (2019) Holobiont chronobiology: mycorrhiza may be a key to linking aboveground and underground rhythms. Mycorrhiza 29:403–412

    Article  PubMed  Google Scholar 

  • Legout A, Hansson K, van der Heijden G, Laclau J-P, Mareschal L, Nys C, Nicolas M, Saint-André L, Ranger J (2020) Chemical fertility of forest ecosystems. Part 2: towards redefining the concept by untangling the role of the different components of biogeochemical cycling. For Ecol Manag 461:117844

    Article  Google Scholar 

  • Lilleskov EA, Hobbie EA, Fahey TJ (2002) Ectomycorrhizal fungal taxa differing in response to nitrogen deposition also differ in pure culture organic nitrogen use and natural abundance of nitrogen isotopes. New Phytol 154:219–231

    Article  CAS  Google Scholar 

  • Lilleskov EA, Hobbie EA, Horton TR (2011) Conservation of ectomycorrhizal fungi: exploring the linkages between functional and taxonomic responses to anthropogenic N deposition. Fungal Ecol 4:174–183

    Article  Google Scholar 

  • Lilleskov EA, Kuyper TW, Bidartondo MI, Hobbie EA (2019) Atmospheric nitrogen deposition impacts on the structure and function of forest mycorrhizal communities: a review. Environ Pollut 246:148–162

    Article  CAS  PubMed  Google Scholar 

  • Lindahl BD, Tunlid A (2015) Ectomycorrhizal fungi – potential organic matter decomposers, yet not saprotrophs. New Phytol 205:1443–1447

    Article  CAS  PubMed  Google Scholar 

  • Lindahl BD, Ihrmark K, Boberg J, Trumbore SE, Högberg P, Stenlid J, Finlay RD (2007) Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytol 173:611–620

    Article  CAS  PubMed  Google Scholar 

  • Luis P, Walther G, Kellner H, Martin F, Buscot F (2004) Diversity of laccase genes from basidiomycetes in a forest soil. Soil Biol Biochem 36:1025–1036

    Article  CAS  Google Scholar 

  • Magoč T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957–2963

    Article  PubMed  PubMed Central  Google Scholar 

  • Maillard F, Didion M, Fauchery L, Bach C, Buée M (2018) N-Acetylglucosaminidase activity, a functional trait of chitin degradation, is regulated differentially within two orders of ectomycorrhizal fungi: Boletales and Agaricales. Mycorrhiza 28:391–397

    Article  CAS  PubMed  Google Scholar 

  • Maillard F, Kohler A, Morin E, Hossann C, Miyauchi S, Ziegler-Devin I, Gérant D, Angeli N, Lipzen A, Keymanesh K et al (2023) Functional genomics gives new insights into the ectomycorrhizal degradation of chitin. New Phytol 238:845–858

    Article  CAS  PubMed  Google Scholar 

  • Martin CE (2011) Adapting swarm intelligence for the self-assembly and optimization of networks. University of Maryland, College Park

    Google Scholar 

  • Midgley MG, Brzostek E, Phillips RP (2015) Decay rates of leaf litters from arbuscular mycorrhizal trees are more sensitive to soil effects than litters from ectomycorrhizal trees. J Ecol 103:1454–1463

    Article  Google Scholar 

  • Moora M, Davison J, Öpik M, Metsis M, Saks Ü, Jairus T, Vasar M, Zobel M (2014) Anthropogenic land use shapes the composition and phylogenetic structure of soil arbuscular mycorrhizal fungal communities. FEMS Microbiol Ecol 90:609–621

    Article  CAS  PubMed  Google Scholar 

  • Nilsson LO, Wallander H (2003) Production of external mycelium by ectomycorrhizal fungi in a Norway spruce forest was reduced in response to nitrogen fertilization. New Phytol 158:409–416

    Article  Google Scholar 

  • Oksanen J (2010) Vegan: community ecology package. http://vegan.r-forge.r-project.org/

  • Olsen SR, Watanabe FS (1957) A method to determine a Phosphorus Adsorption Maximum of soils as measured by the Langmuir Isotherm. Soil Sci Soc Am J 21:144–149

    Article  CAS  Google Scholar 

  • Paul EA (1984) Dynamics of organic matter in soils. Plant Soil 76:275–285

    Article  CAS  Google Scholar 

  • Peay KG, Kennedy PG, Bruns TD (2011) Rethinking ectomycorrhizal succession: are root density and hyphal exploration types drivers of spatial and temporal zonation? Fungal Ecol 4:233–240

    Article  Google Scholar 

  • Pellitier PT, Zak DR, Argiroff WA, Upchurch RA (2021) Coupled shifts in ectomycorrhizal communities and plant uptake of organic nitrogen along a soil gradient: an isotopic perspective. Ecosystems 24:1976–1990

    Article  CAS  Google Scholar 

  • Pérez-Izquierdo L, Rincón A, Lindahl BD, Buée M (2021) Chap. 13 - fungal community of forest soil: diversity, functions, and services. In: Asiegbu FO, Kovalchuk A (eds) Forest Microbiology. Forest Microbiology. Academic, pp 231–255

  • Peter M, Ayer F, Egli S (2001) Nitrogen addition in a Norway spruce stand altered macromycete sporocarp production and below-ground ectomycorrhizal species composition. New Phytol 149:311–325

    Article  PubMed  Google Scholar 

  • Phillips RP, Brzostek E, Midgley MG (2013) The mycorrhizal-associated nutrient economy: a new framework for predicting carbon–nutrient couplings in temperate forests. New Phytol 199:41–51

    Article  CAS  PubMed  Google Scholar 

  • Pickles BJ, Anderson IC (2016) Spatial ecology of ectomycorrhizal fungal communities. Molecular Mycorrhizal Symbiosis. John Wiley & Sons, Ltd, pp 363–386

  • Põlme S, Abarenkov K, Henrik Nilsson R, Lindahl BD, Clemmensen KE, Kauserud H, Nguyen N, Kjøller R, Bates ST, Baldrian P et al (2020) FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Divers 105:1–16

    Article  Google Scholar 

  • Ponge J-F (2003) Humus forms in terrestrial ecosystems: a framework to biodiversity. Soil Biol Biochem 35:935–945

    Article  CAS  Google Scholar 

  • Ponge J-F (2013) Plant–soil feedbacks mediated by humus forms: a review. Soil Biol Biochem 57:1048–1060

    Article  CAS  Google Scholar 

  • Ponge J-F, Chevalier R (2006) Humus Index as an indicator of forest stand and soil properties. For Ecol Manag 233:165–175

    Article  Google Scholar 

  • Ponge J-F, Chevalier R, Loussot P (2002) Humus Index. Soil Sci Soc Am J 66:1996–2001

    Article  CAS  Google Scholar 

  • R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing

  • Rognes T, Flouri T, Nichols B, Quince C, Mahé F (2016) VSEARCH: a versatile open source tool for metagenomics. PeerJ 4:e2584

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosling A, Landeweert R, Lindahl BD, Larsson K-H, Kuyper TW, Taylor AFS, Finlay RD (2003) Vertical distribution of ectomycorrhizal fungal taxa in a podzol soil profile. New Phytol 159:775–783

    Article  CAS  PubMed  Google Scholar 

  • Schimann H, Bach C, Lengelle J, Louisanna E, Barantal S, Murat C, Buée M (2017) Diversity and structure of fungal communities in neotropical rainforest soils: the effect of host recurrence. Microb Ecol 73:310–320

    Article  PubMed  Google Scholar 

  • Sciama D, Augusto L, Dupouey J-L, Gonzalez M, Moares Domínguez C (2009) Floristic and ecological differences between recent and ancient forests growing on non-acidic soils. For Ecol Manag 258:600–608

    Article  Google Scholar 

  • Sims SE, Hendricks JJ, Mitchell RJ, Kuehn KA, Pecot SD (2007) Nitrogen decreases and precipitation increases ectomycorrhizal extramatrical mycelia production in a longleaf pine forest. Mycorrhiza 17:299–309

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Read DJ (2010) Mycorrhizal symbiosis. Academic

  • Sterkenburg E, Bahr A, Brandström Durling M, Clemmensen KE, Lindahl BD (2015) Changes in fungal communities along a boreal forest soil fertility gradient. New Phytol 207:1145–1158

    Article  PubMed  Google Scholar 

  • Štursová M, Žifčáková L, Leigh MB, Burgess R, Baldrian P (2012) Cellulose utilization in forest litter and soil: identification of bacterial and fungal decomposers. FEMS Microbiol Ecol 80:735–746

    Article  PubMed  Google Scholar 

  • Talbot JM, Martin F, Kohler A, Henrissat B, Peay KG (2015) Functional guild classification predicts the enzymatic role of fungi in litter and soil biogeochemistry. Soil Biol Biochem 88:441–456

    Article  CAS  Google Scholar 

  • Taylor LL, Leake JR, Quirk J, Hardy K, Banwart SA, Beerling DJ (2009) Biological weathering and the long-term carbon cycle: integrating mycorrhizal evolution and function into the current paradigm. Geobiology 7:171–191

    Article  CAS  PubMed  Google Scholar 

  • Tedersoo L, May TW, Smith ME (2010) Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20:217–263

    Article  PubMed  Google Scholar 

  • Unestam T, Sun YP (1995) Extramatrical structures of hydrophobic and hydrophilic ectomycorrhizal fungi. Mycorrhiza 5:301–311

    Article  Google Scholar 

  • van der Linde S, Suz LM, Orme CDL, Cox F, Andreae H, Asi E, Atkinson B, Benham S, Carroll C, Cools N et al (2018) Environment and host as large-scale controls of ectomycorrhizal fungi. Nature 558:243–248

    Article  PubMed  Google Scholar 

  • Vandenkoornhuyse P, Quaiser A, Duhamel M, Le Van A, Dufresne A (2015) The importance of the microbiome of the plant holobiont. New Phytol 206:1196–1206

    Article  PubMed  Google Scholar 

  • Verheyen K, Bossuyt B, Hermy M, Tack G (1999) The land use history (1278–1990) of a mixed hardwood forest in western Belgium and its relationship with chemical soil characteristics. J Biogeogr 26:1115–1128

    Article  Google Scholar 

  • Vesala R, Kiheri H, Hobbie EA, van Dijk N, Dise N, Larmola T (2021) Atmospheric nitrogen enrichment changes nutrient stoichiometry and reduces fungal N supply to peatland ericoid mycorrhizal shrubs. Sci Total Environ 794:148737

    Article  CAS  PubMed  Google Scholar 

  • Vicca S, Luyssaert S, Peñuelas J, Campioli M, Chapin FS III, Ciais P, Heinemeyer A, Högberg P, Kutsch WL, Law BE et al (2012) Fertile forests produce biomass more efficiently. Ecol Lett 15:520–526

    Article  CAS  PubMed  Google Scholar 

  • Wallander H, Nylund J-E (1992) Effects of excess nitrogen and phosphorus starvation on the extramatrical mycelium of ectomycorrhizas of Pinus sylvestris L. New Phytol 120:495–503

    Article  CAS  Google Scholar 

  • White, Bruns T, Lee S, Taylor J, White TJ, Bruns TD, Lee SB (1990) and J. W. Taylor. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: 315–322

  • Wickham H (2016) Data Analysis. In: Wickham H (ed) Use R! ggplot2: elegant graphics for data analysis. Springer International Publishing, Cham, pp 189–201

    Chapter  Google Scholar 

  • Zanella A, Jabiol B, Ponge JF, Sartori G, De Waal R, Van Delft B, Graefe U, Cools N, Katzensteiner K, Hager H et al (2011) A European morpho-functional classification of humus forms. Geoderma 164:138–145

    Article  Google Scholar 

  • Zanne AE, Abarenkov K, Afkhami ME, Aguilar-Trigueros CA, Bates S, Bhatnagar JM, Busby PE, Christian N, Cornwell WK, Crowther TW et al (2020) Fungal functional ecology: bringing a trait-based approach to plant-associated fungi. Biol Rev 95:409–433

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was made possible by a large, continent-scale, field campaign. Therefore, we gratefully acknowledge all the persons involved in fieldwork, samples handling, and laboratory analyses: Rémi Borelle, Coralie Chesseron, Jean-Luc Denou, Céline Gire, Catherine Lambrot, Julien Langrand, Tania Maxwell, Sylvie Milin, Alain Mollier, Arnaud Reichard, and Samir Moutama (France); Yasmin Jaber, Stamatis Rafail Tziaferidis, Giorgos Xanthopoulos, Fani Lyrou (Greece); Kris Ceunen (Belgium); Frank Ashwood, Sue Benham, Chris Reynolds, Liz Richardson, Mark Oram, Tom Pettingale and Andrew Ross (England); Ming Yu and Haifeng Zheng (Denmark); Dorothea Zannantonio (Sweden); Raino Lievonen (Finland). We particularly thank Lucie Bon and Mohamed El-Mazlouzi, who help us at organizing and leading the field missions. We also thank Bruno Ringeval and Lucas Auer for their help at collecting global climate data and at performing statistical analyses. F.K. held a PhD fellowship awarded by the Grand Est Region and the “Agence Nationale de la Recherche” (ANR) as part of the ANR project “CARbon functional Traits and their OptimisatioN” - CARTON - (AAPG2019 CES32). This project was supported by funds obtained from the CARTON project and the ANR as part of the ‘Investissements d’Avenir’ program (ANR-11-LABX-0002-01, Lab of Excellence ARBRE).

Author information

Authors and Affiliations

Authors

Contributions

L.A. initiated and coordinated the ANR “CARTON” project. He selected the studied common gardens and interacted with the scientists in charge of those sites (M.N.F., G.S., C.D., R.B., G.G., A.L., B.Z., A.D.S., K.V., E.V., B.M., L.V., A.N., M.J.G., M.L., A.S.), who provided data, ensured monitoring, and supported the field campaign (hosting, field work, tools, shipments, etc.). M.B., D.D. and F.K. designed this study, embedded in the CARTON project. F.K. carried out the molecular biology experiments, handled data, and performed data analyses (bioinformatics and statistics). M.B. and F.K. analysed and interpreted the results. M.B. wrote the manuscript with the help of L.A., D.D., N.F., F.K., M.R.B., and all other authors.

Corresponding authors

Correspondence to Augusto L. or Buée M..

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

F., K., L., B., M., E.M. et al. “Ectomycorrhizal exploration type” could be a functional trait explaining the spatial distribution of tree symbiotic fungi as a function of forest humus forms. Mycorrhiza (2024). https://doi.org/10.1007/s00572-024-01146-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00572-024-01146-8

Navigation