Skip to main content

Advertisement

Log in

In situ seed baiting to isolate germination-enhancing fungi for an epiphytic orchid, Dendrobium aphyllum (Orchidaceae)

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Orchid conservation efforts, using seeds and species-specific fungi that support seed germination, require the isolation, identification, and germination enhancement testing of symbiotic fungi. However, few studies have focused on developing such techniques for the epiphytes that constitute the majority of orchids. In this study, conducted in Xishuangbanna Tropical Botanical Garden, Yunnan, China, we used seeds of Dendrobium aphyllum, a locally endangered and medicinally valuable epiphytic orchid, to attract germination promoting fungi. Of the two fungi isolated from seed baiting, Tulasnella spp. and Trichoderma spp., Tulasnella, enhanced seed germination by 13.6 %, protocorm formation by 85.7 %, and seedling development by 45.2 % (all P < 0.0001). Epulorhiza, another seed germination promoting fungi isolated from Cymbidium mannii, also enhanced seed germination (6.5 %; P < 0.05) and protocorm formation (20.3 %; P < 0.0001), but Trichoderma suppressed seed germination by 26.4 % (P < 0.0001). Tulasnella was the only treatment that produced seedlings. Light increased seed imbibition, protocorm formation, and two-leaved seed development of Tulasnella inoculated seeds (P < 0.0001). Because the germination stage success was not dependent on fungi, we recommend that Tulasnella be introduced for facilitating D. aphyllum seed germination at the protocorm formation stage and that light be provided for increasing germination as well as further seedling development. Our findings suggest that in situ seed baiting can be used to isolate seed germination-enhancing fungi for the development of seedling production for conservation and reintroduction efforts of epiphytic orchids such as D. aphyllum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arditti J (1967) Factors affecting the germination of orchid seeds. Bot Rev 33:1–97

    Article  Google Scholar 

  • Arditti J (1992) Fundamentals of orchid biology. Wiley, New York

    Google Scholar 

  • Arditti J, Ernst R (1984) Physiology of germinating orchid seeds. In: Arditti J (ed) Orchid biology, reviews and perspectives, 3rd edn. Cornell University Press, New York, pp 170–222

    Google Scholar 

  • Arditti J, Ghani AKA (2000) Numerical and physical properties of orchid seeds and their biological implications. New Phytol 145:367–421

    Article  Google Scholar 

  • Atwood JT (1986) The size of the Orchidaceae and the systematic distribution of epiphytic orchids. Selbyana 9:171–186

    Google Scholar 

  • Bao XS, Shun QS, Chen LZ (2001) The medicinal plants of Dendrobium (Shi-Hu) in China, a coloured atlas. Fudan University Press, Shanghai (in Chinese)

    Google Scholar 

  • Batty AL, Dixon KW, Brundrett M, Sivasithamparam K (2001) Constraints to symbiotic germination of terrestrial orchid seed in a Mediterranean bushland. New Phytol 152:511–520

    Article  Google Scholar 

  • Batty AL, Brundrett MC, Dixon KW, Sivasithamparam K (2006) In situ symbiotic seed germination and propagation of terrestrial orchid seedlings for establishment at field sites. Aust J Bot 54:375–381

    Article  Google Scholar 

  • Bidartondo MI, Read DJ (2008) Fungal specificity bottlenecks during orchid germination and development. Mol Ecol 17:3707–3716

    PubMed  Google Scholar 

  • Bretz F, Hothorn T, Westfall P (2010) Multiple comparisons using R. CRC, Boca Raton

    Book  Google Scholar 

  • Brundrett MC, Scade A, Batty AL, Dixon KW, Sivasithamparam K (2003) Development of in situ and ex situ seed baiting techniques to detect mycorrhizal fungi from terrestrial orchid habitats. Mycol Res 107:1210–1220

    Article  PubMed  Google Scholar 

  • Catalano V, Vergara M, Hauzenberger JR, Seiboth B, Sarrocco S, Vannacci G, Kubicek CP, Seidl-Seiboth V (2011) Use of a non-homologous end-joining-deficient strain (delta-ku70) of the biocontrol fungus Trichoderma virens to investigate the function of the laccase gene lcc1 in sclerotia degradation. Curr Genet 57:13–23

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen XQ (1999) Orchidaceae. In: Flora of China 19. Science Press, Beijing, pp 106–108, in Chinese

    Google Scholar 

  • Chen XM, Guo SX (2005) Effects of four species of endophytic fungi on the growth and polysaccharide and alkaloid contents of Dendrobium nobile. Zhongguo Zhong Yao Za Zhi 30:253 (in Chinese)

    CAS  PubMed  Google Scholar 

  • Chen J, Wang H, Guo SX (2012) Isolation and identification of endophytic and mycorrhizal fungi from seeds and roots of Dendrobium (Orchidaceae). Mycorrhiza 22:297–307

    Article  PubMed  Google Scholar 

  • Chutima R, Dell B, Lumyong S (2011) Effects of mycorrhizal fungi on symbiotic seed germination of Pecteilis susannae (L.) Rafin (Orchidaceae), a terrestrial orchid in Thailand. Symbiosis 53:149–156

    Article  CAS  Google Scholar 

  • Cribb PJ, Kell SP, Dixon KW, Barrett RL (2003) Orchid conservation: a global perspective. In: Dixon KW, Kell SP, Barrett RL, Cribb PJ (eds) Orchid conservation. Natural History Publications, Kota Kinabalu, pp 1–24

    Google Scholar 

  • Dearnaley JDW (2007) Further advances in orchid mycorrhizal research. Mycorrhiza 17:475–486

    Article  PubMed  Google Scholar 

  • Dearnaley JDW, Martos F, Selosse MA (2012) Orchid Mycorrhizas: molecular ecology, physiology, evolution and conservation aspects. In: Hock B (ed) Fungal associations. Springer, Berlin, pp 207–230

    Chapter  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15 obtained from http://irc.igd.cornell.edu/Protocols/DoyleProtocol.pdf. Accessed 23 January 2011

    Google Scholar 

  • Dressler RL (1993) Phylogeny and classification of the orchid family. Cambridge University Press, New York

    Google Scholar 

  • Duan CF, Li ZL, Fang F, Yang GH, Chen SS, Hong QY (2010) Isolation and identification research of mycorrhizal isolated from several orchids in Yunnan Province. Xi Nan Nong Ye Xue Bao 23:756–759, in Chinese

    Google Scholar 

  • Eriksson O, Kainulainen K (2011) The evolutionary ecology of dust seeds. Perspect Plant Ecol Evol Syst 13:73–87

    Article  Google Scholar 

  • Fu LK (1992) China plant red data book: rare and endangered plants. I. Science Press, Beijing (in Chinese)

    Google Scholar 

  • Gao JY, Liu Q, Yu DL (2014) Orchids in Xishuangbanna: diversity and conservation. China Forestry Publishing House, Beijing (in Chinese)

    Google Scholar 

  • Godo T, Komori M, Nakaoki E, Yukawa T, Miyoshi K (2010) Germination of mature seeds of Calanthe tricarinata Lindl., an endangered terrestrial orchid, by asymbiotic culture in vitro. In Vitro Cell Dev Biol Plant 46:323–328

    Article  CAS  Google Scholar 

  • Hágsater E, Dumont V (1996) Conservation threats. In: Prindgeon AM (ed) Orchids: status, survey, and conservation action plan. IUCN, Gland, pp 6–9

    Google Scholar 

  • Harley JL (1950) Recent progress in the study of endotrophic mycorrhiza. New Phytol 49:213–247

    Article  Google Scholar 

  • Harvais G (1973) Growth requirements and development of Cypripedium reginae in axenic culture. Can J Bot 51(2):327–332

    Article  CAS  Google Scholar 

  • Herre EA, Mejía LC, Kyllo DA, Rojas E, Maynard Z, Butler A, Van Bael SA (2007) Ecological implications of anti-pathogen effects of tropical fungal endophytes and mycorrhizae. Ecology 88:550–558

    Article  PubMed  Google Scholar 

  • Hollick PS (2004) Mycorrhizal specificity in endemic Western Australian terrestrial orchids (tribe Diurideae): implications for conservation. Doctoral dissertation, Murdoch University

  • Hou XQ, Guo SX (2009) Interaction between a dark septate endophytic isolate from Dendrobium sp. and roots of D. nobile seedlings. J Integr Plant Biol 51:374–381

    Article  CAS  PubMed  Google Scholar 

  • Huang L, He XR, Zheng LM, Cai J (2004) Preliminary studies on mycorrhizal fungi in promoting the growth of orchid seedlings from tissue culture. Re Dai Zuo Wu Xue Bao 25:36–38 (in Chinese)

    Google Scholar 

  • Johnson TR, Stewart SL, Dutra D, Kane ME, Richardson L (2007) Asymbiotic and symbiotic seed germination of Eulophia alta (Orchidaceae)—preliminary evidence for the symbiotic culture advantage. Plant Cell Tissue Organ Cult 90:313–323

    Article  Google Scholar 

  • Kartzinel TR, Trapnell DW, Shefferson RP (2013) Highly diverse and spatially heterogeneous mycorrhizal symbiosis in a rare epiphyte is unrelated to broad biogeographic or environmental features. Mol Ecol. doi:10.1111/mec.12536

    Google Scholar 

  • Kauth PJ, Vendrame WA, Kane ME (2006) In vitro seed culture and seedling development of Calopogon tuberosus. Plant Cell Tissue Organ Cult 85:91–102

    Article  Google Scholar 

  • Keel BG, Zettler LW, Kaplin BA (2011) Seed germination of Habenaria repens (Orchidaceae) in situ beyond its range, and its potential for assisted migration imposed by climate change. Castanea 76:43–54

    Article  Google Scholar 

  • Knudson L (1922) Nonsymbiotic germination of orchid seeds. Bot Gaz 73:1–25

    Article  Google Scholar 

  • Koopowitz H, Hawkins BA (2012) Global climate change is confounding species conservation strategies. Integr Zool 7:158–164

    Article  PubMed  Google Scholar 

  • Li H, Ma Y, Liu W, Liu W (2009) Clearance and fragmentation of tropical rain forest in Xishuangbanna, SW, China. Biodivers Conserv 18:3421–3440

    Article  Google Scholar 

  • Liu H, Luo Y, Liu H (2010) Studies of mycorrhizal fungi of Chinese orchids and their role in orchid conservation in China-a review. Bot Rev 76:241–262

    Article  Google Scholar 

  • Massey EE, Zettler LW (2007) An expanded role for in vitro symbiotic seed germination as a conservation tool: two case studies in North America (Platanthera leucophaea and Epidendrum nocturnum). Lankesteriana 7:303–308

    Google Scholar 

  • Masuhara G, Katsuya K (1994) In situ and in vitro specificity between Rhizoctonia spp. and Spiranthes sinensis (Persoon) Ames, var. amoena (M. Bieberstein) Hara (Orchidaceae). New Phytol 127:711–718

    Article  Google Scholar 

  • McCormick MK, Whigham DF, Sloan D, O'Malley K, Hodkinson B (2006) Orchid-fungus fidelity: a marriage meant to last? Ecology 87:903–911

    Article  PubMed  Google Scholar 

  • McCormick MK, Lee Taylor D, Juhaszova K, Brunett RK, Whigham DF, O'Neill JP (2012) Limitations on orchid recruitment: not a simple picture. Mol Ecol 21:1511–1523

    Article  PubMed  Google Scholar 

  • Moore RT (1987) The genera of Rhizoctonia-like fungi: Ascorhizoctonia, Ceratorhiza gen. nov., Epulorhiza gen. nov., Moniliopsis, and Rhizoctonia. Mycotaxon 29:91–99

    Google Scholar 

  • Nontachaiyapoom S, Sasirat S, Manoch L (2010) Isolation and identification of Rhizoctonia-like fungi from roots of three orchid genera, Paphiopedilum, Dendrobium, and Cymbidium, collected in Chiang Rai and Chiang Mai provinces of Thailand. Mycorrhiza 20:459–471

    Article  PubMed  Google Scholar 

  • Otero JT, Ackerman JD, Bayman P (2002) Diversity and host specificity of endophytic Rhizoctonia-like fungi from tropical orchids. Am J Bot 89:1852–1858

    Article  CAS  Google Scholar 

  • Park EJ, Lee WY (2013) In vitro symbiotic germination of myco-heterotrophic Gastrodia elata by Mycena species. Plant Biotechnol Rep 7:185–191

    Article  CAS  Google Scholar 

  • Perkins AJ, McGee PA (1995) Distribution of the orchid mycorrhizal fungus, Rhizoctonia solani, in relation to its host, Pterostylis acuminata, in the field. Aust J Bot 43:565–575

    Article  Google Scholar 

  • Phillips RD, Barrett MD, Dixon KW, Hopper SD (2011) Do mycorrhizal symbioses cause rarity in orchids? J Ecol 99:585–869

    Article  Google Scholar 

  • R Development Core Team (2011) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. Accessed 30 June 2013

  • Rasmussen HN (2002) Recent developments in the study of orchid mycorrhiza. Plant Soil 244:149–163

    Article  CAS  Google Scholar 

  • Rasmussen HN, Rasmussen FPN (1991) Climatic and seasonal regulation of seed plant establishment in Dactylorhiza majalis inferred from symbiotic experiments in vitro. Lindleyana 6:221–227

    Google Scholar 

  • Rasmussen HN, Rasmussen FN (2009) Orchid mycorrhiza: implications of a mycophagous life style. Oikos 118:334–345

    Article  Google Scholar 

  • Rasmussen HN, Whigham DF (1993) Seed ecology of dust seeds in situ: a new study technique and its application in terrestrial orchids. Am J Bot 80:1374–1378

    Article  Google Scholar 

  • Rasmussen HN, Whigham DF (1998a) Importance of woody debris in seed germination of Tipularia discolor (Orchidaceae). Am J Bot 85:829–834

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen HN, Whigham DF (1998b) The underground phase: a special challenge in studies of terrestrial orchid populations. Bot J Linn Soc 126:49–64

    Article  Google Scholar 

  • Romand-Monnier F (2013) Dendrobium aphyllum. IUCN 2013. IUCN red list of threatened species. Version 2013.1. http://www.iucnredlist.org/details/15053780/0. Accessed 19 November 2013.

  • Sanchez MS, Bills GF, Zabalgogeazcoa I (2008) Diversity and structure of the fungal endophytic assemblages from two sympatric coastal grasses. Fungal Divers 33:87–100

    Google Scholar 

  • Seaton P, Kendon JP, Pritchard HW, Puspitaningtyas DM, Marks TR (2013) Orchid conservation: the next ten years. Lankesteriana 13:93–101

    Google Scholar 

  • Selosse MA, Boullard B, Richardson D (2011) Noël Bernard (1874–1911): orchids to symbiosis in a dozen years, one century ago. Symbiosis 54:61–68

    Article  Google Scholar 

  • Sheng CL, Lee YI, Gao JY (2012) Ex situ symbiotic seed germination, isolation and identification of effective symbiotic fungus in Cymbidium mannii (Orchidaceae). Zhi Wu Sheng Tai Xue Bao 36:859–869 (in Chinese)

    Google Scholar 

  • Shimura H, Sadamoto M, Matsuura M, Kawahara T, Naito S, Koda Y (2009) Characterization of mycorrhizal fungi isolated from the threatened Cypripedium macranthos in a northern island of Japan: two phylogenetically distinct fungi associated with the orchid. Mycorrhiza 19:525–534

    Article  PubMed  Google Scholar 

  • Sileshi GW (2012) A critique of current trends in the statistical analysis of seed germination and viability data. Seed Sci Res 22:145–159

    Article  Google Scholar 

  • Stewart SL, Kane ME (2006) Symbiotic seed germination of Habenaria macroceratitis (Orchidaceae), a rare Florida terrestrial orchid. Plant Cell Tissue Organ Cult 86:159–167

    Article  CAS  Google Scholar 

  • Stewart SL, Zettler LW (2002) Symbiotic germination of three semi-aquatic rein orchids Habenaria repens, H. quinquiseta, H. macroceratitis from Florida. Aquat Bot 72:25–35

    Article  Google Scholar 

  • Subedi A, Kunwar B, Gravendeel B et al (2013) Collection and trade of wild-harvested orchids in Nepal. J Ethnobiol Ethnomed 9:64

    Article  PubMed Central  PubMed  Google Scholar 

  • Swarts ND, Dixon KW (2009a) Terrestrial orchid conservation in the age of extinction. Ann Bot 104:543–556

    Article  PubMed Central  PubMed  Google Scholar 

  • Swarts ND, Dixon KW (2009b) Perspectives on orchid conservation in botanic gardens. Trends Plant Sci 14:590–598

    Article  CAS  PubMed  Google Scholar 

  • Swarts ND, Sinclair EA, Francis A, Dixon KW (2010) Ecological specialization in mycorrhizal symbiosis leads to rarity in an endangered orchid. Mol Ecol 19:3226–3242

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Ogiwara I, Hakoda N (2000) Seed germination of Habenaria (pecteilis) radiata (Orchidaceae: Orchideae) in vitro. Lindleyana 15:59–63

    Google Scholar 

  • Wang H, Zhu H, Li BG (1997) Vegetation on limestone in Xishuangbanna Southwest China. Guangxi Zhi Wu 17:101–117 (in Chinese)

    Google Scholar 

  • Wang D, Jia SH, Zhang ZX, Cai YP, Lin Y (2007) Isolation and culture of an endophytic fungus associated with Dendrobium huoshanense and its effects on the growth of plantlets. J Fungal Res 5:84–88 (in Chinese)

    CAS  Google Scholar 

  • Wang H, Fang H, Wang Y, Duan L, Guo S (2011) In situ seed baiting techniques in Dendrobium officinale Kimuraet Migo and Dendrobium nobile Lindl.: the endangered Chinese endemic Dendrobium (Orchidaceae). World J Microbiol Biotechnol 27:2051–2059

    Article  Google Scholar 

  • Warcup JH, Talbot PHB (1967) Perfect states of Rhizoctonias associated with orchids. New Phytol 66:631–641

    Article  Google Scholar 

  • Warcup JH, Talbot PHB (1971) Perfect states of rhizoctonias associated with orchids. II. New Phytol 70:35–40

    Article  Google Scholar 

  • Warcup JH, Talbot PHB (1980) Perfect states of rhizoctonias associated with orchids. III. New Phytol 86:267–272

    Article  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR Protocols: a guide to methods and applications. Academic, New York, pp 315–322

    Chapter  Google Scholar 

  • Xing X, Ma X, Deng Z, Chen J, Wu F, Guo S (2012) Specificity and preference of mycorrhizal associations in two species of the genus Dendrobium (Orchidaceae). Mycorrhiza 23:317–324. doi:10.1007/s00572-012-0473-8

    Article  PubMed  Google Scholar 

  • Yoder JA, Zettler LW, Stewart SL (2000) Water requirements of terrestrial and epiphytic orchid seeds and seedlings, and evidence for water uptake by means of mycotrophy. Plant Sci 156:145–150

    Article  CAS  PubMed  Google Scholar 

  • Yonzone R, Lama D, Bhujel RB, Rai S, Kendra DKV, Viswavidyalaya UBK, Kalimpong PO (2011) Epiphytic orchid species diversity of Darjeeling Himalaya of West Bengal, India. Asian J Pharm Life Sci ISSN 2231:4423

    Google Scholar 

  • Yuan ZL, Chen YC, Yang Y (2009) Diverse non-mycorrhizal fungal endophytes inhabiting an epiphytic, medicinal orchid (Dendrobium nobile): estimation and characterization. World J Microbiol Biotechnol 25:295–303

    Article  Google Scholar 

  • Zettler LW, Hofer CJ (1998) Propagation of the little club-spur orchid Platanthera clavellata by symbiotic seed germination and its ecological implications. Environ Exp Bot 39:189–195

    Article  Google Scholar 

  • Zettler LW, McInnis JTM (1994) Light enhancement of symbiotic seed germination and development of an endangered terrestrial orchid, Platanthera integrilabia. Plant Sci 102:133–138

    Article  Google Scholar 

  • Zettler LW, Piskin KA (2011) Mycorrhizal fungi from protocorms, seedlings, and mature plants of the eastern prairie fringed orchid, Platanthera leucophaea: a comprehensive list to augment conservation. Am Midl Nat 166:29–39

    Article  Google Scholar 

  • Zhang J, Cao M (1995) Tropical forest vegetation of Xishuangbanna, SW China and its secondary changes, with special reference to some problems in local nature conservation. Biol Conserv 73:229–238

    Article  Google Scholar 

  • Zhu JM, Zhao YM, Bai J, Li YT, Zhang KM, Chen JW, Wu JB, Wang HZ (2011) Preliminary studies on the antagonism of Dendrobium mycorrhizal fungi (Trichoderma persoon). J Hangzhou Normal Univ (Nat Sci Ed) 10:340–344 (in Chinese)

    CAS  Google Scholar 

  • Ziegler AD, Fox JM, Xu J (2009) The rubber juggernaut. Science 324(5930):1024–1025

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (grant no. 31170358) to JYG and manuscript writing was supported by China National Post Doctoral Fund 2013 to UMG and Chinese Academy of Science CAS 135 program (XTBG-T01). We thank Richard T. Corlett and two anonymous reviewers for constructive comments on a previous version of the manuscript. We are also grateful to Wenliu Zhang, Xuli Fan, Hua Lin, Qiang Liu for field and laboratory assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang-Yun Gao.

Additional information

Xiao-Meng Zi and Chun-Ling Sheng contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 18 kb)

ESM 2

(DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zi, XM., Sheng, CL., Goodale, U.M. et al. In situ seed baiting to isolate germination-enhancing fungi for an epiphytic orchid, Dendrobium aphyllum (Orchidaceae). Mycorrhiza 24, 487–499 (2014). https://doi.org/10.1007/s00572-014-0565-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-014-0565-8

Keywords

Navigation