Skip to main content
Log in

Isolation and identification of Rhizoctonia-like fungi from roots of three orchid genera, Paphiopedilum, Dendrobium, and Cymbidium, collected in Chiang Rai and Chiang Mai provinces of Thailand

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Three orchid genera, Paphiopedilum, Cymbidium, and Dendrobium, are among the most heavily traded ornamental plants in Thailand. In this study, 27 isolates of Rhizoctonia-like fungi were isolated from root sections of mature orchids in the three orchid genera, collected from diverse horticultural settings in Chiang Mai and Chiang Rai provinces of Thailand. Fungal identification was done by the morphological characterization, the comparison of the internal transcribed spacer and 5.8S ribosomal DNA sequences, and the phylogenetic analysis. Epulorhiza repens was found to be the most common species found in the roots of various species of all three orchid genera, whereas Epulorhiza calendulina-like isolates were strictly found in the roots of Paphiopedilum species. We have also isolated and described an anamorph of Tulasnella irregularis, four new anamorphic species in the genus Tulasnella, and a new anamorphic species in the family Tulasnellaceae. Our study provides information on diversity of root-associated fungi of the orchid genera and at the sampling sites that were rarely addressed in the previous studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abadie JC, Puttsepp U, Gebauer G, Faccio A, Bonfante P, Selosse MA (2006) Cephalanthera longifolia (Neottieae, Orchidaceae) is mixotrophic: a comparative study between green and nonphotosynthetic individuals. Can J Bot 84:1462–1477

    Article  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  Google Scholar 

  • Athipunyakom P, Manoch L, Piluek C (2004) Isolation and identification of mycorrhizal fungi from eleven terrestrial orchids. Kasetsart J (Nat Sci) 38:216–228

    Google Scholar 

  • Bayman P, Gonzalez EJ, Fumero JJ, Tremblay RL (2002) Are fungi necessary? How fungicides affect growth and survival of the orchid Lepanthes rupestris in the field. J Ecol 90:1002–1008

    Article  CAS  Google Scholar 

  • Bidartondo MI, Burghardt B, Gebauer G, Bruns TD, Read DJ (2004) Changing partners in the dark: isotopic and molecular evidence of ectomycorrhizal liaisons between forest orchids and trees. Proc R Soc Lond B Biol Sci 271:1799–1806

    Article  CAS  Google Scholar 

  • Bougoure JJ, Bougoure DS, Cairney JWG, Dearnaley JDW (2005) ITS-RFLP and sequence analysis of endophytes from Acianthus, Caladenia and Pterostylis (Orchidaceae) in southeastern Queensland. Mycol Res 109:452–460

    Article  CAS  PubMed  Google Scholar 

  • Currah RS, Sherburne R (1992) Septal ultrastructure of some fungal endophytes from boreal orchid mycorrhizas. Mycol Res 96:583–587

    Article  Google Scholar 

  • Dearnaley JDW (2007) Further advances in orchid mycorrhizal research. Mycorrhiza 17:475–486

    Article  PubMed  Google Scholar 

  • Fang D, Hong-xia L, Hui J, Yi-bo L (2008) Symbiosis between fungi and the hybrid Cymbidium and its mycorrhizal microstructures. For Stud China 10:41–44

    Article  Google Scholar 

  • Gebauer G, Meyer M (2003) 15N and 13C natural abundance of autotrophic and mycoheterotrophic orchids provides insight into nitrogen and carbon gain from fungal association. New Phytol 160:209–223

    Article  CAS  Google Scholar 

  • Goh CJ, Sim AA, Lim G (1992) Mycorrhizal associations in some tropical orchids. Lindleyana 7:13–17

    Google Scholar 

  • Hadley G, Ong SH (1978) Nutritional requirements of orchid endophytes. New Phytol 81:561–569

    Article  CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hijner J, Arditti J (1973) Orchid mycorrhizae: vitamin production by the symbionts. Am J Bot 60:829

    Article  Google Scholar 

  • Huang X, Madan A (1999) CAP3: A DNA sequence assembly program. Genome Res 9:868–877

    Article  CAS  PubMed  Google Scholar 

  • Julou T, Burghardt B, Gebauer G, Berveiller D, Damesin C, Selosse M-A (2005) Mixotrophy in orchids: insights from a comparative study of green individuals and nonphotosynthetic individuals of Cephalanthera damasonium. New Phytol 166:639–653

    Article  CAS  PubMed  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Leake JR (1994) Transley review no. 69. The biology of myco-heterotrophic (‘saprophytic’) plants. New Phytol 127:171–216

    Article  Google Scholar 

  • Ma M, Tan TK, Wong SM (2003) Identification and molecular phylogeny of Epulorhiza isolates from tropical orchids. Mycol Res 107:1041–1049

    Article  CAS  PubMed  Google Scholar 

  • Matheny PB, Curtis JM, Hofstetter V et al (2006) Major clades of Agaricales: a multilocus phylogenetic overview. Mycologia 98:982–995

    Article  PubMed  Google Scholar 

  • McCormick MK, Whigham DF, O'Neill J (2004) Mycorrhizal diversity in photosynthetic terrestrial orchids. New Phytol 163(2):425–438

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nanakorn W, Indharamusika S (1998) Ex-situ conservation of native Thai orchids at Queen Sirikit Botanic Garden. Pure Appl Chem 70(11):2065–2145

    Article  Google Scholar 

  • Otero JT, Ackerman JD, Bayman P (2002) Diversity and host specificity of endophytic Rhizoctonia-like fungi from tropical orchids. Am J Bot 89:1852–1858

    Article  CAS  Google Scholar 

  • Otero JT, Flanagan NS, Herre EA, Ackerman JD, Bayman P (2007) Widespread mycorrhizal specificity correlates to mycorrhizal function in the neotropical, epiphytic orchid Ionopsis utricularioides (Orchidaceae). Am J Bot 94:1944–1950

    Article  Google Scholar 

  • Porras-Alfaro A, Bayman P (2007) Mycorrhizal fungi of Vanilla: diversity, specificity and effects on seed germination and plant growth. Mycologia 99:510–525

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen HN (2002) Recent developments in the study of orchid mycorrhiza. Plant Soil 244:149–163

    Article  CAS  Google Scholar 

  • Rasmussen HN, Rasmussen FN (2007) Trophic relationships in orchid mycorrhiza-diversity and implications for conservation. Lankesteriana 7(1–2):334–341

    Google Scholar 

  • Selosse M-A, Faccio A, Scappaticci G, Bonfante P (2004) Chlorophyllous and achlorophyllous specimens of Epipactis microphylla (Neottieae, Orchidaceae) are associated with ectomycorrhizal septomycetes, including truffles. Microb Ecol 47:416–426

    Article  CAS  PubMed  Google Scholar 

  • Shefferson RP, Taylor DL, Weiss M, Garnica S, McCormick MK, Adams S, Gray HM, McFarland JW, Kull T, Tali K, Yukawa T, Kawahara T, Miyoshi K, Lee YI (2007) The evolutionary history of mycorrhizal specificity among lady's slipper orchids. Evolution 61:1380–1390. doi:10.1111/j.1558-5646.2007.00112.x

    Article  PubMed  Google Scholar 

  • Shimura H, Sadamoto M, Matsuura M, Kawahara T, Naito S, Koda Y (2009) Characterization of mycorrhizal fungi isolated from the threatened Cypripedium macranthos in a northern island of Japan: two phylogenetically distinct fungi associated with the orchid. Mycorrhiza 19:525–534

    Article  PubMed  Google Scholar 

  • Sneh B, Burpee L, Ogoshi A (1991) Identification of Rhizoctonia species. APS, St. Paul

    Google Scholar 

  • Suarez JP, Weiss M, Abele A, Garnica S, Oberwinkler F, Kottke I (2006) Diverse tulasnelloid fungi from mycorrhizas with epiphytic orchids in Andean cloud forest. Mycol Res 110:1257–1270

    Article  CAS  PubMed  Google Scholar 

  • Swarts ND, Dixon KW (2009) Perspectives on orchid conservation in botanic gardens. Trends Plant Sci 14:590–593. doi:10.1016/j.tplants.2009.07.008

    Article  CAS  PubMed  Google Scholar 

  • Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony (*and other methods), version 4.0b10. Sinauer, Sunderland

  • Taylor DL, Bruns TD (1997) Independent, specialized invasions of ectomycorrhizal mutualism by two nonphotosynthetic orchids. Proc Natl Acad Sci USA 94:4510–4515

    Article  CAS  PubMed  Google Scholar 

  • Taylor DL, McCormick MK (2008) Internal transcribed spacer primers and sequences for improved characterization of basidiomycetous orchid mycorhizas. New Phytol 177:1020–1033

    Article  CAS  PubMed  Google Scholar 

  • Warcup JH, Talbot PHB (1967) Perfect states of Rhizoctonias associated with orchids. New Phytol 66:631–641

    Article  Google Scholar 

  • Warcup JH, Talbot PHB (1980) Perfect states of Rhizoctonias associated with orchids III. New Phytol 86:267–272

    Article  Google Scholar 

  • Wells K, Bandoni R (2001) Heterobasidiomycetes. In: McLaughlin DJ, McLaughlin EG, Lemke PA (eds) The Mycota. Vol. VII. Part B. Systematics and evolution. Springer Verlag, Heidelberg, pp 85–120

    Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, San Diego, pp 315–322

    Google Scholar 

  • Yam TW, Arditti J (2009) History of orchid propagation: a mirror of the history of biotechnology. Plant Biotechnol Rep 3:1–56. doi:10.1007/s11816-008-0066-3

    Article  Google Scholar 

  • Zelmer CD, Currah RS (1995) Ceratorhiza pernacatena and Epulorhiza calendulina spp. nov: mycorrhizal fungi of terrestrial orchids. Can J Bot 73:1981–1995

    Article  Google Scholar 

  • Zettler LW, Poulter SB, McDonald KI, Stewart SL (2007) Conservation-driven propagation of an epiphytic orchid (Epidendrum nocturnum) with a mycorrhizal fungus. HortSci 42:135–136

    Google Scholar 

Download references

Acknowledgments

We thank Ms. Kalaya Konkwaew, Mae Klang Watershed Management Unit, Mr. Tosaporn Thanamee and Mr. Natthawut Maneeratanachaiyong, P. villosum conservation project, Mr. Auttapon Taluengjit, and Mr. Kittchai Phulek for providing the orchid roots; Dr. Kevin Hyde, Mae Fah Luang University, and Dr. Eakaphun Bangyeekhun, Silpakorn University, for their advice on fungal isolation and storage; Dr. Tosak Seelanan, Chulalongkorn University, and Mr. Sitthisack Phoulivong for their guidance on the phylogenetic analysis. The Thailand Research Fund and the Office of the Higher Education Commission are gratefully acknowledged for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sureeporn Nontachaiyapoom.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nontachaiyapoom, S., Sasirat, S. & Manoch, L. Isolation and identification of Rhizoctonia-like fungi from roots of three orchid genera, Paphiopedilum, Dendrobium, and Cymbidium, collected in Chiang Rai and Chiang Mai provinces of Thailand. Mycorrhiza 20, 459–471 (2010). https://doi.org/10.1007/s00572-010-0297-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-010-0297-3

Keywords

Navigation