Skip to main content

Advertisement

Log in

Contribution of Glomus intraradices inoculation to nutrient acquisition and mitigation of ionic imbalance in NaCl-stressed Trigonella foenum-graecum

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

The study aimed to investigate the effects of an AM fungus (Glomus intraradices Schenck and Smith) on mineral acquisition in fenugreek (Trigonella foenum-graecum) plants under different levels of salinity. Mycorrhizal (M) and non-mycorrhizal (NM) fenugreek plants were subjected to four levels of NaCl salinity (0, 50, 100, and 200 mM NaCl). Plant tissues were analyzed for different mineral nutrients. Leaf senescence (chlorophyll concentration and membrane permeability) and lipid peroxidation were also assessed. Under salt stress, M plants showed better growth, lower leaf senescence, and decreased lipid peroxidation as compared to NM plants. Salt stress adversely affected root nodulation and uptake of NPK. This effect was attenuated in mycorrhizal plants. Presence of the AM fungus prevented excess uptake of Na+ with increase in NaCl in the soil. It also imparted a regulatory effect on the translocation of Na+ ions to shoots thereby maintaining lower Na+ shoot:root ratios as compared to NM plants. Mycorrhizal colonization helped the host plant to overcome Na+-induced Ca2+ and K+ deficiencies. M plants maintained favorable K+:Na+, Ca2+:Na+, and Ca2+:Mg2+ ratios in their tissues. Concentrations of Cu, Fe, and Zn2+ decreased with increase in intensity of salinity stress. However, at each NaCl level, M plants had higher concentration of Cu, Fe, Mn2+, and Zn2+ as compared to NM plants. M plants showed reduced electrolyte leakage in leaves as compared to NM plants. The study suggests that AM fungi contribute to alleviation of salt stress by mitigation of NaCl-induced ionic imbalance thus maintaining a favorable nutrient profile and integrity of the plasma membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Al-Karaki GN (2006) Nursery inoculation of tomato with arbuscular mycorrhizal fungi and subsequent performance under irrigation with saline water. Sci Hort 109:1–7. doi:10.1016/j.scienta.2006.02.019

    Article  Google Scholar 

  • Allen SE (1989) Chemical analysis of ecological materials, 2nd edn. Blackwell Scientific Publications, London

    Google Scholar 

  • Allen EB, Cunningham GL (1983) Effects of vesicular-arbuscular mycorrhizae on Distichlis spicata under three salinity levels. New Phytol 93:227–236. doi:10.1111/j.1469-8137.1983.tb03427.x/pdf

    Article  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  PubMed  CAS  Google Scholar 

  • Aydi S, Sassi S, Abdelly C (2008) Growth, nitrogen fixation and ion distribution in Medicago truncatula subjected to salt stress. Plant Soil 312:59–67. doi:10.1007/s11104-008-9656-7

    Article  CAS  Google Scholar 

  • Bohra JS, Dorffling H, Dorffling K (1995) Salinity tolerance of rice (Oryza satia L.) with reference to endogenous and exogenous abscisic acid. J Agron Crop Sci 174:79–86

    Article  CAS  Google Scholar 

  • Bolan N (1991) A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant Soil 134:189–207. doi:10.1007/BF00012037

    Article  CAS  Google Scholar 

  • Burkert B, Robson A (1994) Zn uptake in subterranean clover (Trifolium subterraneum L.) by three vesicular-arbuscular mycorrhizal fungi in root-free sandy soil. Soil Biol Biochem 26:1117–1124. doi:10.1016/0038-0717(94)90133-3

    Article  Google Scholar 

  • Cabot C, Sibole JV, Barcelo J, Poschenrider C (2009) Sodium-calcium interactions with growth, water and photosynthetic parameters in salt-treated beans. J Plant Nutr Soil Sci 172:637–643. doi:10.1002/jpln.200800124

    Article  CAS  Google Scholar 

  • Cantrell IC, Linderman RG (2001) Preinoculation of lettuce and onion with VA mycorrhizal fungi reduces deleterious effects of soil salinity. Plant Soil 233:269–281

    Article  CAS  Google Scholar 

  • Chen F, Okabe Y, Osando K, Tajima S (1998) Purification and characterization of an NAD-malic enzyme from Bradyrhizobium japonicum A1017. Appl Environ Microbiol 64:4073–4075

    PubMed  CAS  Google Scholar 

  • Colla G, Rouphael Y, Cardarelli M, Tullio M, Rivera CM, Rea E (2008) Alleviation of salt stress by arbuscular mycorrhizal in zucchini plants grown at low and high phosphorus concentration. Biol Fertil Soil 44:501–509. doi:10.1007/s00374-007-0232-8

    Article  CAS  Google Scholar 

  • Cramer GR, Läuchli A, Polito VS (1985) Displacement of Ca2+ ions by Na+ from the plasma lemma of root cells. A primary response to salt stress? Plant Physiol 79:207–211

    Article  PubMed  CAS  Google Scholar 

  • Daei G, Ardekani MR, Rejali F, Teimuri S, Miransari M (2009) Alleviation of salinity stress on wheat yield, yield components, and nutrient uptake using arbuscular mycorrhizal fungi under field conditions. J Plant Physiol 166:617–625. doi:10.1016/j.jplph.2008.09.013

    Article  PubMed  CAS  Google Scholar 

  • De Michele R, Formentin E, Schiavo FL (2009) Legume leaf senescence. A transcriptional analysis. Plant Signal Behav 4:319–320. doi:10.1111/j.1469-8137.2008.02684.x

    Article  PubMed  Google Scholar 

  • Elkahoui S, Hernandez AJ, Abdelly C, Ghrir R, Fb L (2005) Effects of salt on lipid peroxidation and antioxidant enzyme activities of Catharanthus roseus suspension cells. Plant Sci 168:607–613. doi:10.1016/j.plantsci.2004.09.006

    Article  CAS  Google Scholar 

  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1281. doi:10.1093/aob/mcp251

    Article  PubMed  CAS  Google Scholar 

  • Felle HH, Kondorosi E, Kondorosi A, Schultze M (1999) Elevation of the cytosolic free (Ca2+) is indispensable for the transduction of the Nod factor signal in alfalfa. Plant Physiol 121:273–280

    Article  PubMed  CAS  Google Scholar 

  • Feng G, Zhang FS, Li XL, Tian CY, Tang C, Rengel Z (2002) Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza 12:185–190. doi:10.1007/s00572-002-0170-0

    Article  PubMed  CAS  Google Scholar 

  • Frechilla S, Lasa B, Ibarretre L, Lamfus C, Aparico-Tejo P (2001) Pea responses to saline stress is affected by the source of nitrogen nutrition (ammonium or nitrate). Plant Growth Regul 35:171–179. doi:10.1023/A:1014487908495

    Article  CAS  Google Scholar 

  • Garg N, Manchanda G (2008) Effect of arbuscular mycorrhizal inoculation on salt-induced nodule senescence in Cajanus cajan (pigeonpea). J Plant Growth Regul 27:115–124

    Article  CAS  Google Scholar 

  • Garg N, Manchanda G (2009) Role of arbuscular mycorrhizae in the alleviation of ionic, osmotic and oxidative stresses induced by salinity in Cajanus cajan (L.) Millsp. (pigeonpea). J Agron Crop Sci 195:110–123. doi:10.1111/j.1439-037X.2008.00349.x

    Article  CAS  Google Scholar 

  • Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84:489–500. doi:10.1111/j.1469-8137.1980.tb04556.x

    Article  Google Scholar 

  • Giri B, Mukerji KG (2004) Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza 14:307–312. doi:10.1007/s00572-003-0274-1

    Article  PubMed  Google Scholar 

  • Giri B, Kapoor R, Mukerji KG (2003) Influence of arbuscular mycorrhizal fungi and salinity on growth, biomass and mineral nutrition of Acacia auriculiformis. Biol Fertil Soil 38:170–175. doi:10.1007/s00374-003-0636-z

    Article  Google Scholar 

  • Giri B, Kapoor R, Agarwal L, Mukerji KG (2004) Pre-inoculation with arbuscular mycorrhizae helps Acacia auriculiformis grow in degraded Indian wasteland soil. Comm Soil Sci Plant Anal 35:193–204

    Article  CAS  Google Scholar 

  • Giri B, Kapoor R, Mukerji KG (2007) Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K+/Na+ ratios in root and shoot tissues. Microb Ecol 54:753–760. doi:10.1007/s00248-007-9239-9

    Article  PubMed  CAS  Google Scholar 

  • Graham JH, Leonard RT, Menge JA (1981) Membrane-mediated decrease in root exudation responsible for phosphorus inhibition of vesicular-arbuscular mycorrhiza formation. Plant Physiol 68:548–552

    Article  PubMed  CAS  Google Scholar 

  • Grattan SR, Grieve CM (1992) Mineral nutrient acquisition and growth response of plants grown in saline environments. Agr Ecosyst Environ 38:275–300. doi:10.1016/0167-8809(92)90151-Z

    Article  CAS  Google Scholar 

  • Grattan SR, Grieve CM (1999) Salinity, mineral nutrient relations in horticultural crops. Sci Hort 78:127–157. doi:10.1016/S0304-4238(98)00192-7

    Article  CAS  Google Scholar 

  • Guether M, Neuhäuser B, Balestrini R, Dynowski M, Ludewig U, Bonfante P (2009) A mycorrhizal-specific ammonium transporter from Lotus japonicus acquires nitrogen released by arbuscular mycorrhizal fungi. Plant Physiol 150:73–83. doi:10.1104/pp.109.136390

    Article  PubMed  CAS  Google Scholar 

  • Hajiboland R, Aliasgharzadeh N, Laiegh SF, Poschenreider C (2010) Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants. Plant Soil 331:313–327. doi:10.1007/s11104-009-0255-z

    Article  CAS  Google Scholar 

  • Hammer EC, Nasr H, Pallon J, Olsson PA, Wallander H (2011) Elemental composition of arbuscular mycorrhizal fungi at high salinity. Mycorrhiza 21:117–129. doi:10.1007/s00572-010-0316-4

    Article  PubMed  CAS  Google Scholar 

  • Hawkins HJ, Lewis OAM (1993) Effect of NaCl salinity, nitrogen form, calcium and potassium concentration on nitrogen uptake and kinetics in Triticum aestivum L. cv. Gamtoos. New Phytol 124(1):171–177

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198. doi:10.1016/0003-9861(68)90523-7

    Article  PubMed  CAS  Google Scholar 

  • Hiscox JD, Israeltam GF (1979) A method for the extraction of chlorophyll from leaf tissue without maceration. Can J Bot 57:1332–1334

    Article  CAS  Google Scholar 

  • Hodge A, Fitter AH (2010) Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proc Natl Acad Sci USA 107:13754–13759. doi:10.1073/pnas.1005874107

    Article  PubMed  CAS  Google Scholar 

  • Izaguirre-Mayoral LM, Sinclair TR (2009) Irradiance regulates genotype-specific responses of Rhizobium-nodulated soybean to increasing iron and two manganese concentrations in solution culture. J Plant Physiol 166:807–818. doi:10.1016/j.jplph.2008.10.006

    Article  PubMed  CAS  Google Scholar 

  • Jahromi F, Aroca R, Porcel R, Ruiz-Lozano JM (2008) Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants. Microb Ecol 55:45–53. doi:10.1007/s00248-007-9249-7

    Article  PubMed  Google Scholar 

  • Juan M, Rivero RM, Romero L, Ruiz JM (2005) Evaluation of some nutritional and biochemical indicators in selecting salt-resistant tomato cultivars. Environ Exp Bot 54:193–210. doi:10.1016/j.envexpbot.2004.07.004

    Article  CAS  Google Scholar 

  • Kapoor R, Giri B, Mukerji KG (2002) Mycorrhization of coriander to enhance the concentration and quality of oil in seeds. J Sci Food Agric 82:1–4. doi:10.1002/jsfa.1039

    Article  Google Scholar 

  • Kaya C, Kirnak H, Higgs D, Saltali K (2002) Supplementary calcium enhances plant growth and fruit yield in strawberry cultivars grown at high (NaCl) salinity. Sci Hort 93:65–74. doi:10.1016/S0304-4238(01)00313-2

    Article  CAS  Google Scholar 

  • Kaya C, Ashraf M, Sonmez O, Aydenir S, Tuna AL, Cullu MA (2009) The influence of arbuscular mycorrhizal colonization on key growth parameters and fruit yield of pepper plants grown at high salinity. Sci Hort 121:1–6. doi:10.1016/j.scientia.2009.01.001

    Article  CAS  Google Scholar 

  • Khattak RA, Jarrell WM (1989) Effect of saline irrigation waters on soil manganese leaching and bio-availability to sugar beet. Soil Sci Soc Am J 53:142–146

    Article  CAS  Google Scholar 

  • Latef AAHA, Chaoxing H (2011) Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Sci Hort 127:228–233. doi:10.1016/j.scienta.2010.09.020

    Article  Google Scholar 

  • Laüchli A, Lüttge U (2002) Salinity: environment-plants-molecules. Kluwer Academic Press, New York

    Google Scholar 

  • Lutts S, Kinet JM, Bouharmont J (1996) NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann Bot 78(3):389–398. doi:10.1006/anbo.1996.0134

    Article  CAS  Google Scholar 

  • Maathuis FJM (2009) Physiological functions of mineral macronutrients. Curr Opin Plant Biol 12:250–258

    Article  PubMed  CAS  Google Scholar 

  • Maathuis FJM, Amtmann A (1999) K+ nutrition and Na+ toxicity: the basis of cellular K+/Na+ ratios. Ann Bot 84:123–133. doi:10.1006/anbo.1999.0912

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plant, 2nd edn. Academic, New York

    Google Scholar 

  • McMillen B, Juniper S, Abbott LK (1998) Inhibition of hyphal growth of a vesicular-arbuscular mycorrhizal fungus in soil containing sodium chloride limits the spread of infection from spores. Soil Biol Biochem 30:1639–1646. doi:10.1016/S0038-0717(97)00204-6

    Article  CAS  Google Scholar 

  • Miransari M (2010) Arbuscular mycorrhizal fungi and nitrogen uptake. Arch Microbiol 193:77–81. doi:10.1007/s00203-010-0657-6

    Article  PubMed  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250. doi:10.1046/j.0016-8025.2001.00808.x

    Article  PubMed  CAS  Google Scholar 

  • Novarro JM, Martinez V, Carvajal M (2000) Ammonium, bicarbonate and calcium effects on tomato plants grown under saline conditions. Plant Sci 157:89–96. doi:10.1016/S0168-9452(00)00272-7

    Article  Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev 6:765–775. doi:10.1038/nrmicro1987

    Google Scholar 

  • Pelaez C, Olivares E, Cuenca G, Izaguirre-Mayoral ML (2010) Manganese modulates the responses of nitrogen-supplied and Rhizobium-nodulated Phaseolus vulgaris L. to inoculation with arbuscular mycorrhizal fungi. Soil Biol Biochem 42:1924–1933. doi:10.1016/j.soilbio.2010.07.001

    Article  CAS  Google Scholar 

  • Philips J, Hayman DS (1970) Improved procedure for cleaning roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161

    Article  Google Scholar 

  • Porcel R, Barea JM, Ruiz-Lozano JM (2003) Antioxidant activities in mycorrhizal soybean plants under drought stress and their possible relationship to the process of nodule senescence. New Phytol 157:135–143

    Article  CAS  Google Scholar 

  • Porras-Soriano A, Soriano-Martin ML, Porras-Piedra A, Azcon R (2009) Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions. J Plant Physiol 166:1350–1359. doi:10.1016/j.jplph.2009.02.010

    Article  PubMed  CAS  Google Scholar 

  • Rao DLN, Giller KE, Yeo AR, Flowers TJ (2002) The effects of salinity and sodicity upon nodulation and nitrogen fixation in chickpea (Cicer arietinum). Ann Bot 89:563–570. doi:10.1093/aob/mcf097

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Lozano JM, Azcon R (2000) Symbiotic efficiency and infectivity of an autochthonous arbuscular mycorrhizal Glomus sp from saline soils and Glomus deserticola under salinity. Mycorrhiza 10:137–143

    Article  CAS  Google Scholar 

  • Ruiz-Lozano JM, Collados C, Barea JM, Azcón R (2001) Arbuscular mycorrhizal symbiosis can alleviate drought-induced nodule senescence in soybean plants. New Phytol 151:493–502

    Article  CAS  Google Scholar 

  • Sannazzaro AI, Echeverria M, Alberto EO, Ruiz OA, Menendez AB (2007) Modulation of polyamine balance in Lotus glaber by salinity and arbuscular mycorrhiza. Plant Physiol Biochem 45:39–46. doi:10.1016/j.plaphy.2006.12.008

    Article  PubMed  CAS  Google Scholar 

  • Sharma MP, Gour A, Bhatia NP, Adholeya A (1996) Growth responses and dependence of Acacia nilotica var. cupriformis on the indigenous arbuscular mycorrhizal consortium of a marginal wasteland soil. Mycorrhiza 6:169–177

    Article  Google Scholar 

  • Sheng M, Tang M, Chan H, Yang B, Zhang F, Huang Y (2008) Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18:287–296. doi:10.1007/s00572-008-0180-7

    Article  PubMed  CAS  Google Scholar 

  • Shokri S, Maadi B (2009) Effect of arbuscular mycorrhizal fungus on the mineral nutrition and yield of Trifolium alexandrinum plants under salinity stress. J Agron 8:79–83

    Article  CAS  Google Scholar 

  • Silveira JAG, Melo ARB, Viegas RA, Oliveira JTA (2001) Salinity-induced effects on nitrogen assimilation related to growth in cowpea plants. Environ Exp Bot 46:171–179. doi:10.1016/S0098-8472(01)00095-8

    Article  CAS  Google Scholar 

  • Taiz L, Zeiger E (2006) Plant Physiology, 4th edn. Sinauer Associates, Inc., Sunderland

    Google Scholar 

  • Tuna AL, Kaya C, Ashraf M, Altunlu H, Yokas I, Bulent Y (2007) The effects of calcium sulphate on growth, membrane stability and nutrient uptake of tomato plants grown under salt stress. Environ Exp Bot 59:173–178. doi:10.1016/j.envexpbot.2005.12.007

    Article  CAS  Google Scholar 

  • Turkmen O, Sensoy S, Demir S, Erdine C (2008) Effects of two different AMF species on growth and nutrient content of pepper seedlings grown under moderate salt stress. Afr J Biotechnol 7:392–396

    CAS  Google Scholar 

  • van Hoorn JW, Katerji N, Hamdy A, Mastrorilli M (2001) Effect of salinity on yield and nitrogen uptake of four grain legumes and on biological nitrogen contribution from the soil. Agr Water Manag 51:87–98. doi:10.1016/S0378-3774(01)00114-7

    Article  Google Scholar 

  • Wu QS, Zou YN, Liu W, Ye XF, Zai HF, Zhao LJ (2010) Alleviation of salt stress in citrus seedlings inoculated with mycorrhiza: changes in leaf antioxidant defense systems. Plant Soil Environ 56:470–475

    CAS  Google Scholar 

  • Xu F, Li L, Huang X, Cheng H, Wang Y, Cheng S (2010) Antioxidant and antibacterial properties of the leaves and stems of Premna microphylla. J Med Plant Res 4:2544–2550

    Google Scholar 

  • Yeo AR, Lee KS, Izard P, Boursier PJ, Flowers TJ (1991) Short- and long-term effects of salinity on leaf growth in rice (Oryza satia L.). J Exp Bot 42:881–889

    Article  CAS  Google Scholar 

  • Zuccarini P (2007) Mycorrhizal infection ameliorates chlorophyll content and nutrient uptake of lettuce exposed to saline irrigation. Plant Soil Environ 53:283–288

    CAS  Google Scholar 

  • Zuccarini P, Okurowska P (2008) Effects of mycorrhizal colonization and fertilization on growth and photosynthesis of sweet basil under salt stress. J Plant Nutr 31:497–513. doi:10.1080/01904160801895027

    Article  CAS  Google Scholar 

  • Zwiazek JJ, Blake TJ (1991) Early detection of membrane injury in black spruce (Picea mariana). Can J Forest Res 21:401–404. doi:10.1139/x91-050

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial assistance by the Council of Scientific and Industrial Research and the University Grants Commission, New Delhi. The authors are also grateful to Mr. Ellumalai Palani for technical assistance in CHNS system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupam Kapoor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evelin, H., Giri, B. & Kapoor, R. Contribution of Glomus intraradices inoculation to nutrient acquisition and mitigation of ionic imbalance in NaCl-stressed Trigonella foenum-graecum . Mycorrhiza 22, 203–217 (2012). https://doi.org/10.1007/s00572-011-0392-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-011-0392-0

Keywords

Navigation