Skip to main content
Log in

RF and linearity parameters analysis of 20 nm gate-all-around gate-stacked junction-less accumulation mode MOSFET for low power circuit applications

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

For low-power circuit applications, the performance of the circuit is significantly influenced by the MOSFET's analog/RF and non-linearity properties. Gate-all-around junction-less accumulation mode MOSFETs (JAM) are now the perfect choice for low-power circuit applications. In the present work, the gate-stack engineering method is used for gate-all-around junction-less accumulation mode MOSFET (GSJAM) to improve the analog/RF characteristics. The analog/RF and linearity parameter analyses are numerically performed for a 20 nm channel length gate-all-around gate-stacked junction-less MOSFET using an ATLAS 3D device simulator. The comparative analysis of these analog/RF and linearity parameters is also done. The gate stack engineering shows significant improvements in analog/RF parameters, i.e., trans-conductance (gm), output resistance (Rout), early voltage (Vea), intrinsic gain (AV), trans-conductance frequency product (TFP), gain frequency product (GFP), trans-conductance generation factor (TGF), gain bandwidth product (GBWP), gain trans-conductance frequency product (GTFP), and cut-off frequency (fT). The results of the simulation investigation show that when GSJM is compared to JAM MOSFET, the values of gm, Rout, Vea, and TGF are all 26.37%, 2.24 times, 22.38%, and 20.78% higher, respectively. Also, the gate-stack junction-less MOSFET improves the linearity parameters, i.e., 2nd -order trans-conductance (gm2), 3rd -order trans-conductance (gm3), VIP2, VIP3, IIP3, IMD3, and 1-dBCP. When comparing GSJAM to JAM MOSFET, the values of VIP2 are 81.63% higher, VIP3 is 1.77 times higher, IIP3 is 6.72 times higher, and 1-dBCP is twice as high. Further, for analog/RF applications, a 20 nm CMOS common-source voltage amplifier circuit using gate-stake junction-less MOSFET has also been designed for a 20 mV and 1 GHz sinusoidal input signal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Data availability

Not applicable.

References

Download references

Acknowledgements

Authors are thankful to director MAIT, Delhi for providing research facilities to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jitender Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, J., Mahajan, A.N., Deswal, S.S. et al. RF and linearity parameters analysis of 20 nm gate-all-around gate-stacked junction-less accumulation mode MOSFET for low power circuit applications. Microsyst Technol 30, 673–685 (2024). https://doi.org/10.1007/s00542-023-05590-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-023-05590-y

Navigation