Skip to main content
Log in

Analog and RF Performance Evaluation of Junctionless Accumulation Mode (JAM) Gate Stack Gate All Around (GS-GAA) FinFET

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

This work presents the analog and RF performance evaluation of Junctionless Accumulation Mode (JAM) Gate Stack Gate All Around (GS-GAA) FinFET, and the results acquired have been compared with conventional FinFET and GAA FinFET. It has been observed that in comparison to conventional FinFET, leakage current (Ioff) reduces by almost thirty times for the GS-GAA FinFET configuration. Thus, revamping the threshold voltage (Vth), switching ratio (Ion/Ioff), and subthreshold slope (SS) of the proposed device. Also, major analog parameters like transconductance (gm), transconductance generation factor (TGF) enhances considerably with early voltage (VEA) and intrinsic gain (Av) increased by over two times in magnitude for the GS-GAA FinFET configuration. Furthermore, several important RF parameters have been explored, and the outcome of the study is that the GS-GAA FinFET configuration shows superior RF performance. In GS-GAA FinFET configuration, the gain frequency product (GFP) and gain transconductance frequency product (GTFP) amplified by over two times in magnitude with minimal decrease in the cut-off frequency (fT) and maximum oscillation frequency (fmax). Thus, the proposed GS-GAA FinFET device can be looked upon as an appealing option for high-frequency analog/RF applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The above-mentioned authors have all the relevant data associated with this research work and will be dedicated to share that, if they will be asked to do so in future.

References

  1. Moore GE (1998) Cramming more components onto integrated circuits. Proc IEEE 86(1):82–85. https://doi.org/10.1109/JPROC.1998.658762

    Article  Google Scholar 

  2. Jeon DY, Park SJ, Mouis M, Barraud S, Kim GT, Ghibaudo G (2013) Low-temperature electrical characterization of junctionless transistors. Solid State Electron 80:135–141. https://doi.org/10.1016/j.sse.2012.10.018

    Article  CAS  Google Scholar 

  3. Kumar A, Gupta N, Chaujar R (2016) TCAD RF performance investigation of transparent gate recessed channel MOSFET. Microelectron J 49:36–42. https://doi.org/10.1016/j.mejo.2015.12.007

    Article  Google Scholar 

  4. Doria RT, Pavanello MA, Lee CW, Ferain I, Dehdashti-Akhavan N, Yan R, Razavi P, Yu R, Kranti A, Colinge JP (2010) Analog operation and harmonic distortion temperature dependence of nMOS Junctionless transistors. ECS Trans 31(1):13–20. https://doi.org/10.1149/1.3474137

    Article  CAS  Google Scholar 

  5. Colinge JP, Lee CW, Afzalian A, Akhavan ND, Yan R, Ferain I, Razavi P, O’Neill B, Blake A, White M, Kelleher AM, McCarthy B, Murphy R (2010) Nanowire transistors without junctions. Nat Nanotechnol 5(3):225–229. https://doi.org/10.1038/nnano.2010.15

    Article  CAS  PubMed  Google Scholar 

  6. Biswas K, Sarkar A, Sarkar CK (2018) Fin shape influence on analog and RF performance of junctionless accumulation-mode bulk FinFETs. Microsyst Technol 24(5):2317–2324

    Article  CAS  Google Scholar 

  7. Kim TK, Kim DH, Yoon YG, Moon JM, Hwang BW, Moon D, Lee GS, Lee DW, Yoo DE, Hwang HC, Kim JS, Choi YK, Cho BJ, Lee SH (2013) First demonstration of junctionless accumulation-mode bulk FinFETs with robust junction isolation. IEEE Electron Device Lett 34(12):1479–1481. https://doi.org/10.1109/LED.2013.2283291

    Article  CAS  Google Scholar 

  8. Lee CW, Ferain I, Afzalian A, Yan R, Akhavan ND, Razavi P, Colinge JP (2010) Performance estimation of junctionless multigate transistors. Solid. State. Electron. 54(2):97–103. https://doi.org/10.1016/j.sse.2009.12.003

    Article  CAS  Google Scholar 

  9. Hisamoto D, Lee WC, Kedzierski J, Takeuchi H, Asano K, Kuo C, Anderson E, King TJ, Bokor J, Hu C (2000) FinFET-A self-aligned double-gate MOSFET scalable to 20 nm. IEEE Trans Electron Devices 47(12):2320–2325. https://doi.org/10.1109/16.887014

    Article  CAS  Google Scholar 

  10. Huang YC, Chiang MH, Wang SJ, Fossum JG (2017) GAAFET versus pragmatic FinFET at the 5nm Si-based CMOS technology node. IEEE J Electron Devices Soc 5(3):164–169. https://doi.org/10.1109/JEDS.2017.2689738

    Article  Google Scholar 

  11. The International Technology Roadmap for Semiconductors 2.0: 2015, Itrpv, 2015 [Online]. Available: http://www.itrs2.net/

  12. Lo SH, Buchanan DA, Taur Y, Wang W (1997) Quantum-mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide nMOSFET’s. IEEE Electron Device Lett. 18(5):209–211. https://doi.org/10.1109/55.568766

    Article  CAS  Google Scholar 

  13. Ribes G, Mitard J, Denais M, Bruyere S, Monsieur F, Parthasarathy C, Vincent E, Ghibaudo G (2005) Review on high-k dielectrics reliability issues. IEEE Trans Device Mater Reliab 5(1):5–19. https://doi.org/10.1109/TDMR.2005.845236

    Article  CAS  Google Scholar 

  14. Robertson J (2004) High dielectric constant oxides. Eur Phys Journal Applied Phys 28:265–291. https://doi.org/10.1051/epjap:2004206

    Article  CAS  Google Scholar 

  15. Onishi K, Kang CS, Choi R, Cho HJ, Gopalan S, Nieh RE, Krishnan SA, Lee JC (2003) Improvement of surface carrier mobility of HfO2 MOSFETs by high-temperature forming gas annealing. IEEE Trans. Electron Devices 50(2):384–390. https://doi.org/10.1109/TED.2002.807447

    Article  CAS  Google Scholar 

  16. Kerber A, Cartier E, Pantisano L, Degraeve R, Kauerauf T, Kim Y, Hou A, Groeseneken G, Maes HE (2003) Origin of the threshold voltage instability in SiO2/HfO2 dual layer gate dielectrics. IEEE Electron Device Lett. 24(2):87–89. https://doi.org/10.1109/LED.2003.808844

    Article  CAS  Google Scholar 

  17. Gupta N, Chaujar R (2016) Optimization of high-k and gate metal work function for improved analog and intermodulation performance of gate stack (GS)-GEWE-SiNW MOSFET. Superlattice Microst 97:630–641. https://doi.org/10.1016/j.spmi.2016.07.021

    Article  CAS  Google Scholar 

  18. Sjöblom G (2006) Metal gate technology for advanced CMOS devices, Ph.D. dissertation Dept. Engg. Sci., Uppsala Univ., Sweden

  19. Liu Y, Kijima S, Sugimata E, Masahara M, Endo K, Matasukawa T, Ishii K, Sakamoto K, Sekigawa T, Yamauchi H, Takanashi Y, Suzuki E (2006) Investigation of the TiN gate electrode with tunable work function and its application for FinFET fabrication. IEEE Trans Nanotechnol 5(6):723–728. https://doi.org/10.1109/TNANO.2006.885035

    Article  Google Scholar 

  20. Vitale SA, Kedzierski J, Healey P, Wyatt PW, Keast CL (2011) Work-function-tuned TiN metal gate FDSOI transistors for subthreshold operation. IEEE Trans. Electron Devices 58(2):419–426. https://doi.org/10.1109/TED.2010.2092779

    Article  CAS  Google Scholar 

  21. Mohapatra SK, Pradhan KP, Singh D, Sahu PK (2015) The role of geometry parameters and fin aspect ratio of sub-20nm SOI-FinFET: an analysis towards analog and RF circuit design. IEEE Trans Nanotechnol 14(3):546–554. https://doi.org/10.1109/TNANO.2015.2415555

    Article  CAS  Google Scholar 

  22. Trivedi N, Kumar M, Gupta M, Haldar S, Deswal SS, Gupta RS (2016) Investigation of analog / RF performance of High-k spacer junctionless accumulation-mode cylindrical gate all around (JLAM-CGAA ) MOSFET, in 2016 IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics Engineering (UPCON), pp. 201–205, https://doi.org/10.1109/UPCON.2016.7894652

  23. Raskin JP, Chung TM, Kilchytska V, Lederer D, Flandre D (2006) Analog/RF performance of multiple gate SOI devices: wideband simulations and characterization. IEEE Trans. Electron Devices 53(5):1088–1095. https://doi.org/10.1109/TED.2006.871876

    Article  CAS  Google Scholar 

  24. Bhattacharya D, Jha NK (2014) FinFETs: from devices to architectures. Adv Electron 2014:21–55. https://doi.org/10.1155/2014/365689

    Article  Google Scholar 

  25. Kumar B, Kumar A, Chaujar R (2020) The effect of gate stack and high-K Spacer on device performance of a junctionless GAA FinFET, in IEEE VLSI Device, Circuit and System Conference (VLSI-DCS), pp. 159–163, https://doi.org/10.1109/VLSIDCS47293.2020.9179855

  26. ATLAS (2016) User’s manual. SILVACO International, CA, Santa Clara, USA

    Google Scholar 

  27. Lee H, Yu LE, Ryu SW, Han JW, Jeon K, Jang DY, Kim KH, Lee J, Kim JH, Jeon SC, Oh JS, Park YC, Bae WH, Lee HM, Yang JM, Yoo JJ, Kim SI, Choi YK (2006) Sub-5nm all-around gate FinFET for ultimate scaling. in Digest of Technical Papers - Symposium on VLSI Technology 25(9):58–59. https://doi.org/10.1109/VLSIT.2006.1705215

    Article  Google Scholar 

  28. Kumar A, Gupta N, Tripathi SK, Tripathi MM, Chaujar R (2020) Performance evaluation of linearity and intermodulation distortion of nanoscale GaN-SOI FinFET for RFIC design. AEU - Int J Electron Commun 115:153052. https://doi.org/10.1016/j.aeue.2019.153052

    Article  Google Scholar 

  29. Pradhan KP, Mohapatra SK, Sahu PK, Behera DK (2014) Impact of high-k gate dielectric on analog and RF performance of nanoscale DG-MOSFET. Microelectron J 45(2):144–151. https://doi.org/10.1016/j.mejo.2013.11.016

    Article  CAS  Google Scholar 

  30. Narendar V, Girdhardas KA (2018) Surface potential modeling of Graded-Channel gate-stack (GCGS) high-K dielectric dual-material double-gate (DMDG) MOSFET and analog/RF performance study. Silicon 10(6):2865–2875. https://doi.org/10.1007/s12633-018-9826-z

    Article  CAS  Google Scholar 

  31. Amin SI, Sarin RK (2015) Charge-plasma based dual-material and gate-stacked architecture of junctionless transistor for enhanced analog performance. Superlattice Microst 88:582–590. https://doi.org/10.1016/j.spmi.2015.10.017

    Article  CAS  Google Scholar 

  32. Malik P, Gupta RS, Chaujar R, Gupta M (2012) AC analysis of nanoscale GME-TRC MOSFET for microwave and RF applications. Microelectron Reliab 52(1):151–158. https://doi.org/10.1016/j.microrel.2011.07.070

    Article  CAS  Google Scholar 

  33. Mohapatra SK, Pradhan KP, Artola L, Sahu PK (2015) Estimation of analog/RF figures-of-merit using device design engineering in gate stack double gate MOSFET. Mater Sci Semicond Process 31:455–462. https://doi.org/10.1016/j.mssp.2014.12.026

    Article  CAS  Google Scholar 

  34. Gupta N, Kumar A, Chaujar R (2015) Impact of device parameter variation on RF performance of gate electrode workfunction engineered (GEWE)-silicon nanowire (SiNW) MOSFET. J Comput Electron 14(3):798–810. https://doi.org/10.1007/s10825-015-0715-z

    Article  CAS  Google Scholar 

  35. Shimizu Y, Kim GC, Murakami B, Ueda K, Utsurogi Y, Cha S, Matsuoka T, Taniguchi K (2004) Drain current response delay of FD-SOI MOSFETs in RF operation. IEICE Electron Express 1(16):518–522. https://doi.org/10.1587/elex.1.518

    Article  Google Scholar 

  36. Shin S, Kang IM, Kim KR (2012) Extraction method for substrate-related components of vertical junctionless silicon nanowire field-effect transistors and its verification on radio frequency characteristics. Jpn J Appl Phys 51, https://doi.org/10.1143/JJAP.51.06FE20

  37. Kumar A, Tripathi MM, Chaujar R (2017) Investigation of parasitic capacitances of In2O5Sn gate electrode recessed channel MOSFET for ULSI switching applications. Microsyst Technol 23(12):5867–5874. https://doi.org/10.1007/s00542-017-3348-2

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Microelectronics Research Laboratory, Delhi Technological University, for supporting the work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design.

Corresponding author

Correspondence to Rishu Chaujar.

Ethics declarations

All the Ethical Standards have been seen by the authors and will supposed to follow them in future as well.

Conflict of Interests

The authors declare that they have ‘no known conflict of interests or personal relationships’ that could have appeared to influence the work reported in this paper.

Consent to Participate & for Publication

Since, the concerned research paper is based for the ‘non-life science journal’. So, ‘Not Applicable’ here.

However, the authors have gone through all policies of journal and consent the authorities for further processing.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, B., Chaujar, R. Analog and RF Performance Evaluation of Junctionless Accumulation Mode (JAM) Gate Stack Gate All Around (GS-GAA) FinFET. Silicon 13, 919–927 (2021). https://doi.org/10.1007/s12633-020-00910-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00910-7

Keywords

Navigation