Skip to main content
Log in

Effects of Hafnium Oxide on Short Channel Effects and DC Analysis for Double Gate Junctionless Transistors

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

In this paper, a silicon based two dimensional (2D) double gate junctionless transistor (JLT) is analyzed for its functional understanding and performance optimization feasibility. The DC characteristics and short channel effects (SCEs) analysis are performed for the proposed JLT structure. JLT with different structural parameter variation like gate length (10–80 nm), oxide thickness (1–5 nm), doping concentration (1 × 1015–1 × 1019 cm−3), and raising source and drain thickness are investigated. The effect of these parameters and dielectric variation on the threshold voltage, drain current, transconductance, drain induced barrier lowering (DIBL) and subthreshold swing (SS) of the junctionless transistor also evaluated and analyzed. The analysis shows that the threshold voltage of JLT can be tuned by controlling device structural parameters. Further variation in gate oxide shows that JLT with hafnium oxide (HfO2) gives better device characteristics compare to JLTs with silicon nitride (Si3N4) and silicon-dioxide (SiO2). Use of high-k dielectric in gate oxide improves the JLT with respect to DIBL and SS. By choosing the proper channel doping, gate dielectric and their thickness combinations, the desired device characteristics could be obtained for junctionless transistor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

source drain (RSD) structure of JLT

Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. D.J. Frank, R.H. Dennard, E. Nowak, P.M. Solomon, Y. Taur, H.-S.P. Wong, Device scaling limits of Si MOSFETs and their application dependencies. Proc. IEEE 89(3), 259–288 (2001)

    Article  CAS  Google Scholar 

  2. D. Hisamoto, W.-C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T.-J. King, J. Bokor, C. Hu, FinFET: a self-aligned double gate MOSFET scalable to 20 nm. IEEE Trans. Electron Dev. 47, 2320–2325 (2000)

    Article  CAS  Google Scholar 

  3. S. Banerjee, W. Richardson, J. Coleman, A. Chatterjee, A new three-terminal tunnel device. IEEE Electron Dev. Lett. 8, 347–349 (1987)

    Article  Google Scholar 

  4. R. H. Baughman, A. A. Zhakidov, W. A. Deheer, Carbon nanotubes-the route toward applications. Science 297, 787–792 (2002)

  5. Y. Taur, D. Buchanan, W. Chen, D.J. Frank et al., CMOS scaling into the nanometer regime. Proc. IEEE 85, 4 (1997)

    Google Scholar 

  6. J.P. Colinge, FinFETs and Other Multi-Gate Transistors (Springer, New York, 2008)

    Book  Google Scholar 

  7. D. Hisamoto, W.C. Lee, J. Kedzierski et al., FinFET a self-aligned double gate MOSFET scalable to 20nm. IEEE Trans. Electron Dev. 47, 2320–2325 (2000)

    Article  CAS  Google Scholar 

  8. K. Suzuki, T. Tanaka, Y. Tosaka, H. Horie, Y. Arimoto, Scalling thoery for double-gate SOI MOSFET’s. IEEE Trans. Electron Dev. 40(12), 2326–2329 (1990)

    Article  Google Scholar 

  9. J.M. Larson, J.P. Snyder, Overview and status of metal S/D Schottky-barrier MOSFET technology. IEEE Trans. Electron Dev. 53(5), 1048–1058 (2006)

    Article  CAS  Google Scholar 

  10. C.-W. Lee, A. Afzalian, N.D. Akhavan, R. Yan, I. Ferain, J.-P. Colinge, Junctionless multigate field-effect transistors. Appl. Phys. Lett. 94, 053–511 (2009)

    Google Scholar 

  11. J.P. Colinge, C.W. Lee, I. Ferain, N. Dehdashti Akhavan, R. Yan, P. Razavi, R. Yu, A.N. Nazarov, R.T. Doria, Reduced electric field in junctionless transistors. Appl. Phys. Lett. 96, 073510 (2010)

    Article  Google Scholar 

  12. J.P. Colinge, C.W. Lee, A. Aryan et al., Nanowire transistors without junctions. Nat. Nanotechnol. 5, 225–229 (2010)

    Article  CAS  Google Scholar 

  13. A. Kranti, R. Yan, C.W. Lee et al., Junctionless nanowire transistor (JNT): properties and design guidelines. IEEE Explore 65, 357–360 (2010)

    Google Scholar 

  14. J. P. Colinge, C. W. Lee, N. D. Akhavan, et al., Junctionless transistors: physics and properties, in Semiconductor-on-insulator Materials for Nanoelectronics Applications, Engineering Materials (Springer, New York, 2011), pp. 187–199

  15. C.-W. Lee, I. Ferain, A. Afzalian, R. Yan, N.D. Akhavan, P. Razavi, J.-P. Colinge, Performance estimation of junctionless multigate transistors. Solid State Elect. 54, 97–103 (2010)

    Article  Google Scholar 

  16. Y. Wang, C. Shan, Z. Dou, L. Wang, F. Cao, Improved performance of nanoscale junctionless transistor based on gate engineering approach. Microelectron. Reliab. 55, 318–325 (2015)

    Article  CAS  Google Scholar 

  17. H. Lou et al., A junctionless nanowire transistor with a dual-material gate. IEEE Trans. Electron Dev. 59(7), 1829–1836 (2012)

    Article  CAS  Google Scholar 

  18. A. Baidya, V. Krishnan, S. Baishya, T.R. Lenka, Effect of thin gate dielectrics and gate materials on simulated device characteristics of 3D double gate JNT. Superlatt. Microstruct. 77, 209–218 (2015)

    Article  CAS  Google Scholar 

  19. C.W. Lee, A. Borne, I. Ferain et al., High-temperature performance of silicon junctionless nanowires. IEEE Trans. Electron Dev. 57(3), 620–625 (2010)

    Article  CAS  Google Scholar 

  20. M.D. Souza, M.A. Pavanello, R.D. Trevisoli, R.T. Doria, J.P. Colinge, Cryogenic operation of junctionless nanowire transistors. IEEE Electron Dev. Lett. 32(10), 1322–1324 (2011)

    Article  Google Scholar 

  21. F. Jazaeri, L. Barbut, J.M. Sallese, Generalized charge-based model of double-gate junctionless FETs, including inversion. IEEE Trans. Electron Dev. 61(10), 3553–3557 (2014)

    Article  Google Scholar 

  22. F. Jazaeri, L. Barbut, J.M. Sallese, Trans-capacitance modeling in junctionless gate-all-around nanowire FETs. Solid State Electron. 96, 34–37 (2014)

    Article  CAS  Google Scholar 

  23. N.P. Maity, R. Maity, R.K. Thapa, S. Baishya, A tunneling current density model for ultra thin HfO2 high-k dielectric material based MOS devices. Superlatt. Microstruct. 95, 24–32 (2016)

    Article  CAS  Google Scholar 

  24. N. P. Maity, Reshmi Maity, R. K. Thapa, S. Baishya, Study of interface charge densities for ZrO2 and HfO2 based metal-oxide semiconductor devices, Adv. Mater. Sci. Eng. 2014, 1–6 (2014)

  25. H. Chakraborty, R. Maity, N.P. Maity, Analysis of surface potential for dual-material-double-gate MOSFET based on modeling and simulation. Microsyst. Technol. 25, 4675–4684 (2019)

    Article  Google Scholar 

  26. N.P. Maity, R. Maity, S. Baishya, A tunneling current model with practical barrier for ultra thin high-k dielectric ZrO2 material based MOS devices. Silicon 10, 1645–1652 (2018)

    Article  CAS  Google Scholar 

  27. N.P. Maity, R. Maity, S. Baishya, Voltage and oxide thickness dependent tunneling current density and tunnel resistivity model: application to high-k material HfO2 based MOS devices. Superlatt. Microstruct. 111, 628–641 (2017)

    Article  CAS  Google Scholar 

  28. H. Chakraborty, R. Maity, S. Baishya, N.P. Maity, An accurate model for threshold voltage analysis of dual material double gate metal oxide semiconductor field effect transistor. Silicon (2020). https://doi.org/10.1007/s12633-020-00553-8

    Article  Google Scholar 

  29. N.P. Maity, R. Maity, S. Baishya, An analytical model for the surface potential and threshold voltage of a double-gate heterojunction tunnel FinFET. J. Comput. Elect. 18, 65–75 (2019)

    Article  CAS  Google Scholar 

  30. A. Baidya, T.R. Lenka, S. Baishya, Lateral distortion analysis of 3D double gate junctionless transistor with high k dielectrics and gate metals. Silicon (2020). https://doi.org/10.1007/s12633-020-00669-8x

    Article  Google Scholar 

  31. N.P. Maity, R. Maity, S. Maity, S. Baishya, Comparative analysis of the quantum FinFET and trigate FinFET based on modeling and simulation. J. Comput. Elect. 18, 492–499 (2019)

    Article  CAS  Google Scholar 

  32. N.P. Maity, R. Maity, S. Dutta, S. Deb, K. Srinivasa Rao, G. Sravani, S. Baishya, Effects of hafnium oxide on surface potential and drain current models for subthreshold short channel metal–oxide–semiconductor-field-effect-transistor, Trans. Elect. Elect. Mater. 21, 339–347 (2020)

  33. A. Koukab, F. Jazaeri, J.-M. Sallese, On performance scaling and speed of junctionless transistors. Solid State Elect 79, 18–21 (2013)

    Article  Google Scholar 

  34. S. Panchanan, R. Maity, S. Baishya, N. P. Maity, A surface potential model for tri-gate metal oxide semiconductor field effect transistor: analysis below 10 nm channel length. Eng Sci Technol Int J 24(4), 879–889 (2021).

    Google Scholar 

  35. S. Panchanan, R. Maity, S. Baishya, N. P. Maity, Modeling, simulation and analysis of surface potential and threshold voltage: application to high-K material HfO2 based FinFET. Silicon (2020). https://doi.org/10.1007/s12633-020-00607-x.

    Article  Google Scholar 

  36. J.P. Duarte, S. Choi, Y. Choi, A full-range drain current model for double-gate junctionless transistors. IEEE Trans. Elect. Dev. 58(12), 4219–4225 (2011). https://doi.org/10.1109/TED.2011.2169266

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank and highly indebted to University Grant Commission (UGC) India for supporting the simulation facilities for this technical work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niladri Pratap Maity.

Ethics declarations

Conflict of interest

The author declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phulawariya, H.K., Baidya, A., Maity, R. et al. Effects of Hafnium Oxide on Short Channel Effects and DC Analysis for Double Gate Junctionless Transistors. Trans. Electr. Electron. Mater. 23, 430–440 (2022). https://doi.org/10.1007/s42341-021-00365-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-021-00365-6

Keywords

Navigation