Skip to main content
Log in

Enhancement of pH-sensitivity using In0.53Ga0.47As channel ion-sensitive-field-effect-transistors

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

In this paper, for the first time, a pH-sensor using an In0.53Ga0.47As based ion-sensitive-field-effect-transistor (ISFET) is proposed to show its superior sensing performance as compared to its equivalent Si counterpart. Extensive numerical analyses of the proposed In0.53Ga0.47As-ISFET are performed in order to extract various sensitivity parameters, e.g., threshold voltage sensitivity (Vth-sensitivity), ON-current sensitivity (ION-sensitivity), and gate-voltage sensitivity (VGS-sensitivity), followed by the performance comparison with the equivalent Si-ISFET sensor, the experimental data of which are used for calibration of the simulation framework. The obtained results show that the long-channel In0.53Ga0.47As-ISFET sensor exhibits 10, 962%, and 9.75% improvement for Vth-sensitivity, ION-sensitivity, and VGS-sensitivity respectively, compared to the equivalent Si-ISFET-sensor at supply voltage of 0.5 V. Furthermore, our findings reveal that a down-scaled ISFET, for instance, a 40-nm-In0.53Ga0.47As-ISFET sensor shows 26, 213% and 10.5% improvement of Vth-sensitivity, ION-sensitivity, and VGS-sensitivity, respectively at the same supply voltage compared to its equivalent Si ISFET sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Ahangari Z (2016) Impact of indium mole fraction on the quantum transport of ultra-scaled InxGa1−xAs double-gate Schottky MOSFET: tight-binding approach. Appl Phys A 122(69):1–7

    Google Scholar 

  • Dehzangi A, Larki F, Wee MFMR, Wichmann N, Majlis BY, Bollaert S (2017) Analog/RF study of self-aligned In0.53Ga0.47As MOSFET with scaled gate length. J Electron Mater 46(2):782–789

    Article  Google Scholar 

  • Fernandes PG, Stiegler HJ, Zhao M, Cantley KD, Obradovic B, Chapman RA, Wen H-C, Mahmud G, Vogel EM (2012) SPICE macromodel of silicon-on-insulator-field-effect-transistor-based biological sensors. Sens Actuators B Chem 161:163–170

    Article  Google Scholar 

  • Georgiou P, Toumazou C (2009) ISFET characteristics in CMOS and their application to weak inversion operation. Sens Actuators B Chem 143:211–217

    Article  Google Scholar 

  • Lauro MD, Casalini S, Berto M, Campana A, Cramer T, Murgia M, Geoghegan M, Borolotti CA, Biscarini F (2016) The substrate is a pH-controlled second gate of electrolyte-gated organic field-effect transistor. ACS Appl Mater Interfaces 8:31783–31790

    Article  Google Scholar 

  • Martinoia S, Massobrio G (2000) A behavioural macromodel of the ISFET in SPICE. Sens Actuators B Chem 62:182–189

    Article  Google Scholar 

  • Martinoia S, Grattarola M, Massobrio G (1992) Modelling non-ideal behaviours in sensitive FETs with SPICE. Sens Actuators B Chem 7:561–564

    Article  Google Scholar 

  • Massobrio G, Martinoia S (1996) Modelling the ISFET behaviour under temperature variations using BIOSPICE. Electron Lett 32(10):936–938

    Article  Google Scholar 

  • Nair PR, Alam MA (2008) Screening-limited response of nanobiosensors. Nano Lett 8(5):1281–1285

    Article  Google Scholar 

  • Singh Y, Adhikari MS (2014) Performance evaluation of a lateral trench-gate power MOSFET on InGaAs. J Comput Electron 13(1):155–160

    Article  Google Scholar 

  • Siu WM, Cobbold RSC (1999) Basic properties of the electrolyte—SiO2—Si system: physical and theoretical aspect. IEEE Trans Electron Devices 26(11):1805–1815

    Article  Google Scholar 

  • Tewari S, Biswas A, Mallik A (2012) Study of InGaAs-channel MOSFETs for analog/mixed-signal system-on-chip applications. IEEE Electron Device Lett 33(3):372–374

    Article  Google Scholar 

  • Tewari S, Biswas A, Mallik A (2013) Impact of different barrier layers and indium content of the channel on the analog performance of InGaAs MOSFETs. IEEE Trans Electron Devices 60(5):1584–1589

    Article  Google Scholar 

  • Tewari S, De S, Biswas A, Mallik A (2017) Impact of sidewall spacer on n-InGaAs devices and hybrid InGaAs/Si CMOS amplifiers in deca-nanometer regime. Microsyst Technol. https://doi.org/10.1007/s00542-017-3658-4

    Article  Google Scholar 

  • Wang W, Hwang JCM, Xuan Y, Ye PD (2011) Analysis of electron mobility in inversion-mode Al2O3/InxGa1−xAs MOSFETs. IEEE Trans Electron Devices 58(7):1972–1978

    Article  Google Scholar 

  • Xue F, Zhao H, Chen YT, Wang Y, Zhou F, Lee JC (2011) InAs inserted InGaAs buried channel metal-oxide-semiconductor field-effect-transistors with atomic-layer-deposited gate dielectric. Appl Phys Lett 98(8):082106

    Article  Google Scholar 

  • Xue F, Jiang A, Zhao H, Chen YT, Wang Y, Zhou F, Lee J (2012) Sub-50-nm In0.7Ga0.3As MOSFETs with various barrier layer materials. IEEE Electron Device Lett 33(1):32–34

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suchismita Tewari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, N., Tewari, S. & Biswas, A. Enhancement of pH-sensitivity using In0.53Ga0.47As channel ion-sensitive-field-effect-transistors. Microsyst Technol 28, 659–664 (2022). https://doi.org/10.1007/s00542-018-4163-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-018-4163-0

Navigation