Skip to main content
Log in

Device Physics Based Analytical Modeling and Simulation Study of Electrical Characteristics of ISFET pH-sensor

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this article, an analytical framework is put together to describe a pH Sensor based on Ion Sensitive Field-Effect Transistor (ISFET) and then simulated using Synopsys TCAD tool. In the proposed simulation work the electrolyte material and oxide surface charge density have been modeled explicitly by using experimental data available in the literature which makes this study unique from previously reported works. Furthermore, the method for adding a new material in Synopsys TCAD and using its advanced PMI feature are briefly illustrated in this work. The proposed work is validated against an available experimental work with good accuracy of 2.66% error percentage in the result. This article gives an adequate insight into the working principle of ISFET device with the objective of assisting beginners in this field before one can proceed into advanced research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The authors declare that the data supporting the findings of this study are available within the article.

References

  1. Bergveld P (1970) Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Trans Biomed Eng BME-17(1):70–71. https://doi.org/10.1109/TBME.1970.4502688

    Article  Google Scholar 

  2. Bergveld P (2003) Thirty years of ISFETOLOGY, What happened in the past 30 years and what may happen in the next 30 years. Sens Actuators B 88(1):1–20. https://doi.org/10.1016/S0925-4005(02)00301-5

    Article  CAS  Google Scholar 

  3. Sukesan R, Chen YT, Shahim S, Wang SL, Sarangadharan I, Wang YL (2019) Instant mercury ion detection in industrial waste water with a microchip using extended gate field-effect transistors and a portable device. Sensors 19(2209). https://doi.org/10.3390/s19092209

  4. Joly M, Mazenq L, Marlet M, Temple-Boyer P, Durieu C, Launay J (2017) All-solid-state multimodal probe based on ISFET electrochemical microsensors for in-situ soil nutrients monitoring in agriculture

  5. Yates DE, Levine S, Healy TW (1974) Site-binding model of the electrical double layer at the oxide/water interface. J Chem Soc, Faraday Trans 1, Phys Chem Condens Phases 70:1807–1818. https://doi.org/10.1039/F19747001807

    CAS  Google Scholar 

  6. Bergveld P (2003) ISFET, theory and practice. In: IEEE sensor conference, Toronto, vol 10

  7. van der Schoot BH, Bergveld P (1987) ISFET based enzyme sensors. Biosensors 3:161–186. https://doi.org/10.1016/0265-928X(87)80025-1

    Article  Google Scholar 

  8. Kosmulski M (1995) Oxide/electrolyte interface: electric double layer in mixed solvent systems. Colloids Surf A 95:81–100. https://doi.org/10.1016/0927-7757(94)03029-Y

    Article  CAS  Google Scholar 

  9. van Hal REG, Eijkel JCT, Bergveld P (1996) A general model to describe the electrostatic at electrolyte oxide interfaces. Adv Colloid Inter Sci 69(1-3):31–62. https://doi.org/10.1016/S0001-8686(96)00307-7

    Article  Google Scholar 

  10. Grattarola M, Massobrio G, Martinoia S (1992) Modeling H/sup +/-sensitive FETs with SPICE. IEEE Trans Electron Dev 39(4):813–819. https://doi.org/10.1109/16.127470

    Article  CAS  Google Scholar 

  11. David CG (1947) The electrical double layer and the theory of electro-capillarity. Chem Rev 41 (3):441–501. https://doi.org/10.1021/cr60130a002

    Article  Google Scholar 

  12. MATLAB (March 2017) Equation solving algorithms, version R2017a, Natick, Massachusetts, The MathWorks Inc.

  13. Bard AJ, Faulkner LR (2001) 13 Electrochemical Methods Fundamentals and Applications, 2nd edn. Wiley, New York

  14. Tsividis Y, McAndrew C (2004) Operation and Modelling of the MOS Transistor. Oxford Univ Press, London

    Google Scholar 

  15. Peech M (1965) Hydrogen-ion activity. In: Methods of Soil Analysis, John Wiley & Sons, Ltd., ch. 60, pp 914–926

  16. Bandiziol A, Palestri P, Pittino F, Esseni D, Selmi L (2015) A TCAD-based methodology to model the site-binding charge at ISFET/electrolyte interfaces. IEEE Trans Electron Dev 62(10):3379–3386. https://doi.org/10.1109/TED.2015.2464251

    Article  CAS  Google Scholar 

  17. Chung I-Y, Jang H, Lee J, Moon H, Seo SM, Kim DH (2012) Simulation study on discrete charge effects of SiNW biosensors according to bound target position using a 3D TCAD simulator. Nanotechnology 23(6):065202. https://doi.org/10.1088/0957-4484/23/6/065202

    Article  Google Scholar 

  18. Dinar AM, Zain ASM, Salehuddin F, Mothana LA, Abdulhameed MK, Mowafak KM (2019) Modeling and simulation of electrolyte pH change in conventional ISFET using commercial Silvaco TCAD. In: IOP Conference series: materials science and engineering, vol 518, p 042020. https://doi.org/10.1088/1757-899x/518/4/042020

  19. Marcus Y (2012) Volumes of aqueous hydrogen and hydroxide ions at 0 to 200. J Chem Phys 137(15):154501. https://doi.org/10.1063/1.4758071

    Article  Google Scholar 

  20. Wang X, Bommier C, Jian Z, Li Z, Chandrabose RS, Rodríguez-Pérez IA, Greaney PA, Ji X (2017) Hydronium-ion batteries with perylenetetracarboxylic dianhydride crystals as an electrode. Angew Chem Int Ed Engl 56(11):2909–2913. https://doi.org/10.1002/anie.201700148

    Article  CAS  Google Scholar 

  21. Coe JV, Earhart AD, Cohen MH, Hoffman GJ, Sarkas HW, Bowen KITH (1997) Using cluster studies to approach the electronic structure of bulk water: Reassessing the vacuum level, conduction band edge, and band gap of water. J Chem Phys 107:6023–6031. https://doi.org/10.1063/1.474271

    Article  CAS  Google Scholar 

  22. Passeri D, Morozzi A, Kanxheri K, Scorzoni A (2015) Numerical simulation of ISFET structures for biosensing devices with TCAD tools. BioMed Eng OnLine 14:1–16. https://doi.org/10.1186/1475-925X-14-S2-S3

    Article  Google Scholar 

  23. Pittino F, Palestri P, Scarbolo P, Esseni D, Selmi L (2014) Models for the use of commercial TCAD in the analysis of silicon-based integrated biosensors. Solid-State Electron 98:63–69. https://doi.org/10.1016/j.sse.2014.04.011

    Article  CAS  Google Scholar 

  24. SentaurusTM Device User Guide (2015) Synopsys, Mountain View, CA, USA

  25. Narang R, Saxena M, Gupta M (2017) Analytical model of pH sensing characteristics of junctionless silicon on insulator ISFET. IEEE Trans Electron Dev 64(4):1742–1750. https://doi.org/10.1109/TED.2017.2668520

    Article  Google Scholar 

  26. Liou JJ, Ortiz-Conde A, Garcia-Sanchez F (1998) Extraction of the threshold voltage of MOSFETs. In: Analysis and design of mosfets. Springer, Boston. https://doi.org/10.1007/978-1-4615-5415-8∖_3

  27. Bhardwajn R, Sinha N, Sahu S, Majumder P, Narang RM (2019) Modeling and simulation of temperature drift for ISFET based pH sensor and its compensation through machine learning techniques. Int J Circuit Theory Appl 47(6):954–970. https://doi.org/10.1002/cta.2618

    Article  Google Scholar 

  28. Khwairakpam DS, Pukhrambam PD (2021) Sensitivity optimization of a double-gated ISFET pH-sensor with HfO2/SiO2 gate dielectric stack. Microelectronics J 118:105282. https://doi.org/10.1016/j.mejo.2021.105282

    Article  CAS  Google Scholar 

  29. Chin Y-L, Chou J-C, Sun T-P, Chung W-Y, Hsiung S-K (2001) A novel pH sensitive ISFET with on chip temperature sensing using CMOS standard process. Sens Actuators B 76(1):582–593. https://doi.org/10.1016/S0925-4005(01)00639-6

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Contributions of each author have all been accounted.

Corresponding author

Correspondence to Dayananda Khwairakpam.

Ethics declarations

Ethics approval

Authors guidelines have been maintained.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khwairakpam, D., Pukhrambam, P. & Wangkheirakpam, V. Device Physics Based Analytical Modeling and Simulation Study of Electrical Characteristics of ISFET pH-sensor. Silicon 14, 9061–9070 (2022). https://doi.org/10.1007/s12633-021-01555-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-01555-w

Keywords

Navigation