Skip to main content
Log in

High-Performance pH Sensors Using Ion-Sensitive InGaAs-Channel MOSFETs at Sub-100 nm Technology Node

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This paper reports unique InGaAs-based ion-sensitive field-effect transistor (ISFET) sensor devices having a sensing gate in addition to the traditional floating gate with different kinds of barrier materials such as no barrier, single barrier (InP) and double barrier (InP and InAlAs), at sub-100 nm technology node. The impact of barrier layers coupled with the modified gate architecture on the sensing performance of the proposed devices has been investigated and compared thoroughly in terms of different performance metrics, e.g., threshold voltage sensitivity, ON-current sensitivity, and ON/OFF-current sensitivity. Interestingly, it has been found that the sensor device with a single barrier exhibits the highest threshold voltage sensitivity of ~ 67 mV/pH and largest ION/IOFF ratio sensitivity of 25/pH, compared to the other devices. Furthermore, it is worth mentioning that the threshold voltage sensitivity of the single-barrier sensor device crosses the conventional Nernst limit of 59 mV/pH at room temperature, by 14%. Critically analyzing the results, it is found that the sensor device with a single barrier has evolved as the most promising device for pH-sensing application, not only from the standpoint of high sensitivity parameters, but also from the fabrication point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J.K. Park, H.J. Jang, J.T. Park, and W.J. Cho, Solid State Electron. 97, 27 (2014). https://doi.org/10.1016/j.sse.2014.04.036.

    Article  CAS  Google Scholar 

  2. D. Passeri, A. Morozzi, K. Kanxheri, and A. Scorzoni, Biomed. Eng. 14, 2 (2015). https://doi.org/10.1186/1475-925X-14-S2-S3.

    Article  Google Scholar 

  3. M. Hajmirzaheydarali, M. Akbari, S. Shahsafi, S. Soleimani-Amiri, M. Sadeghipari, S. Mohajerzadeh, A. Samaeian, and M.A. Malboobi, IEEE Electron Device Lett. (2016). https://doi.org/10.1109/led.2016.2549044.

    Article  Google Scholar 

  4. P.N. De Aza, F. Guitian, A. Merlos, E. Lora-Tamayo, and S. De Aza, J. Mater. Sci. Mater. Med. 7, 399 (1996). https://doi.org/10.1007/BF00122007.

    Article  Google Scholar 

  5. P.D. Batista and M. Mulato, J. Mater. Sci. 45, 5478 (2010). https://doi.org/10.1007/s10853-010-4603-4.

    Article  CAS  Google Scholar 

  6. M. Hosseini, M. Fathollahzadeh, M. Kolahdouz, A. Rostamian, M. Mahmoodian, A. Samaeian, and H.H. Radamson, J. Solid State Electrochem. 22, 3161 (2018). https://doi.org/10.1007/s10008-018-4025-9.

    Article  CAS  Google Scholar 

  7. A. Tarasov, M. Wipf, R.L. Stoop, K. Bedner, W. Fu, V.A. Guzenko, O. Knopfmacher, M. Calame, and C. Schönenberger, ACS Nano 6, 10 (2012). https://doi.org/10.1021/nn303795r.

    Article  CAS  Google Scholar 

  8. P. Canizares, C. Jimenez, F. Martinez, M.A. Rodrigo, and C. Saez, J. Hazard. Mater. 163, 1 (2009). https://doi.org/10.1016/j.jhazmat.2008.06.073.

    Article  CAS  Google Scholar 

  9. H.-J. Jang and W.-J. Cho, Appl. Phys. Lett. 100, 073701 (2012). https://doi.org/10.1063/1.3685497.

    Article  CAS  Google Scholar 

  10. O. Knopfmacher, A. Tarasov, W. Fu, M. Wipf, B. Niesen, M. Calame, and C. Schonenberger, Nano Lett. (2010). https://doi.org/10.1021/nl100892y.

    Article  Google Scholar 

  11. F.M. Zörgiebel, S. Pregl, L. Römhildt, J. Opitz, W. Weber, T. Mikolajick, L. Baraban, and G. Cuniberti, Nano Res. 7, 2 (2014). https://doi.org/10.1007/s12274-013-0393-8.

    Article  CAS  Google Scholar 

  12. K.B. Parizi, A.J. Yeh, A.S.Y. Poon, and H.S.P. Wong, Int. Electron Devices Meeting, San Franc., CA (2012). https://doi.org/10.1109/IEDM.2012.6479098.

    Article  Google Scholar 

  13. K. Kim, J.K. Lee, S.J. Han, and S. Lee, Appl. Sci. 10, 1146 (2020). https://doi.org/10.3390/app10031146.

    Article  CAS  Google Scholar 

  14. C.-Y. Hsiao, C.-H. Lin, C.-H. Hung, C.-J. Su, Y.-R. Lo, C.-C. Lee, H.-C. Lin, F.-H. Ko, T.-Y. Huang, and Y.-S. Yang, Biosens. Bioelectron. (2009). https://doi.org/10.1016/j.bios.2008.07.032.

    Article  Google Scholar 

  15. Y.Q. Wu, W.K. Wang, O. Koybasi, D.N. Zakharov, E.A. Stach, S. Nakahara, and J.C.M. Hwang, IEEE Electron Dev. Lett. 30, 7 (2009). https://doi.org/10.1109/LED.2009.2022346.

    Article  CAS  Google Scholar 

  16. F. Xue, A. Jiang, H. Zhao, Y.T. Chen, Y. Wang, F. Zhou, and J. Lee, IEEE Electron Dev. Lett. 33, 1 (2012). https://doi.org/10.1109/LED.2011.2172910.

    Article  CAS  Google Scholar 

  17. F. Xue, H. Zhao, Y. Chen, Y. Wang, F. Zhou, and J.C. Lee, Appl. Phys. Lett. 98, 8 (2011). https://doi.org/10.1063/1.3559609.

    Article  CAS  Google Scholar 

  18. S. Tewari, A. Biswas, and A. Mallik, IEEE Trans. Electron Devices 60, 5 (2013). https://doi.org/10.1109/TED.2013.2249071.

    Article  CAS  Google Scholar 

  19. K. Ajay, R. Narang, M. Saxena, and M. Gupta, IEEE Trans. Electron Devices 64, 4 (2017). https://doi.org/10.1109/ted.2017.2668520.

    Article  CAS  Google Scholar 

  20. ATLAS User’s Manual, A Device Simulation Package (SILVACO Int., Santa Clara, CA, 2015).

  21. A. Bandiziol, P. Palestri, F. Pittino, D. Esseni, and L. Selmi, IEEE Trans. Electron Devices 62, 10 (2015). https://doi.org/10.1109/TED.2015.2464251.

    Article  CAS  Google Scholar 

  22. E. Mohammadi and N. Manavizadeh, IEEE Trans. Electron Devices 65, 6 (2018). https://doi.org/10.1109/TED.2018.2857218.

    Article  Google Scholar 

  23. K.B. Parizi, X. Xu, A. Pal, X. Hu, and H.S.P. Wong, Sci. Rep. 7, 41305 (2017). https://doi.org/10.1038/srep41305.

    Article  CAS  Google Scholar 

  24. Y. Marcus, Chem. Rev. 88, 8 (1988). https://doi.org/10.1021/cr00090a003.

    Article  Google Scholar 

  25. W. Wang, J.C.M. Hwang, Y. Xuan, and P.D. Ye, IEEE Trans. Electron Dev. 58, 7 (2011). https://doi.org/10.1109/TED.2011.2146255.

    Article  CAS  Google Scholar 

  26. E. Mohammadi and N. Manavizadeh, Solid State Phys. 14, 12 (2017). https://doi.org/10.1002/pssc.201700202.

    Article  CAS  Google Scholar 

  27. A. Ortiz-Conde, F.J. Garcia, J.J. Liou, A. Cerdeira, M. Estarda, and Y. Yue, Microelectron. Reliab. 42, 583 (2002). https://doi.org/10.1016/S0026-2714(02)00027-6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijit Biswas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S., Tewari, S., Biswas, A. et al. High-Performance pH Sensors Using Ion-Sensitive InGaAs-Channel MOSFETs at Sub-100 nm Technology Node. J. Electron. Mater. 50, 1292–1300 (2021). https://doi.org/10.1007/s11664-020-08630-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08630-9

Keywords

Navigation