Skip to main content
Log in

Global solvability in a Keller-Segel-growth system with indirect signal production

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, we consider a fully parabolic Keller-Segel-growth system with indirect signal production: \(u_t=\Delta u-\chi \nabla \cdot (u\nabla v)+f(u)\); \(v_t=\Delta v-v+w\); \(w_t=\Delta w-w+u\), \(x\in \Omega \), \(t>0\) in a bounded and smooth domain \(\Omega \subset {\mathbb {R}}^N\) \((N\ge 2)\) with no-flux boundary conditions, where \(\chi \) is a positive constant. We present the global existence of generalized solutions under appropriate regularity assumptions on the initial data. In addition, the asymptotic behavior of generalized solutions is discussed, and our result generalize previously known ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bellomo, N., Bellouquid, A., Tao, Y., Winkler, M.: Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues. Math. Models Methods Appl. Sci. 25, 1663–1763 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Black, T.: Global very weak solutions to a chemotaxis-fluid system with nonlinear diffusion. SIAM J. Math. Anal. 50(4), 4087–4116 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dai, F., Liu, B.: Global solvability and asymptotic stabilization in a three-dimensional Keller-Segel-Navier-Stokes system with indirect signal production. Math. Methods Appl. Sci. 31(10), 2091–2163 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ding, M., Wang, W.: Global boundedness in a quasilinear fully parabolic chemotaxis system with indirect signal production. Discrete Contin. Dyn. Syst. Ser. B 24(9), 4665–4684 (2019)

    MathSciNet  MATH  Google Scholar 

  5. Dong, Y., Peng, Y.: Global boundedness in the higher-dimensional chemotaxis system with indirect signal production and rotational flux. Appl. Math. Lett. 112, 106700 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  6. Evans, L.C.: Partial differential equations. In: American Mathematical Society, vol. 19, 2nd edn. Providence, Rhode Island (2010)

  7. Friedman, A.: Partial differential equations. Holt, Rinehart and Winston, New York (1969)

    MATH  Google Scholar 

  8. Fujie, K., Ito, A., Winkler, M., Yokota, T.: Stabilization in a chemotaxis model for tumor invasion. Discrete Contin. Dyn. Syst. Ser. A 36, 151–169 (2016)

    MathSciNet  MATH  Google Scholar 

  9. Fujie, K., Senba, T.: Application of an Adams type inequality to a two-chemical substances chemotaxis system. J. Differ. Equ. 263, 88–148 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Herrero, M.A., Velázquez, J.J.L.: A blow-up mechanism for a chemotaxis model. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 24, 633–683 (1997)

    MathSciNet  MATH  Google Scholar 

  11. Hillen, T., Painter, K.: A user’s guide to PDE models for chemotaxis. J. Math. Biol. 58, 183–217 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Horstmann, D.: From until present: the Keller-Segel model in chemotaxis and its consequences I. Jahresber. Deutsch. Math. Verein. 105(2003), 103–165 (1970)

    MathSciNet  MATH  Google Scholar 

  13. Hu, B., Tao, Y.: To the exclusion of blow-up in a three-dimensional chemotaxis-growth model with indirect attractant production. Math. Models Methods Appl. Sci. 26, 2111–2128 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Isenbach, M.: Chemotaxis. Imperial College Press, London (2004)

    Book  Google Scholar 

  15. Keller, E., Segel, L.: Initiation of slime mold aggregation viewed as an instability. J. Theoret. Biol. 26, 399–415 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lankeit, E., Lankeit, J.: On the global generalized solvability of a chemotaxis model with signal absorption and logistic growth terms. Nonlinearity 32, 1569–1596 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lankeit, J., Winkler, M.: A generalized solution concept for the Keller-Segel system with logarithmic sensitivity: global solvability for large nonradial data. Nonlinear Differ. Equ. Appl. 24, 49 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu, S., Wang, L.: Global boundedness of a chemotaxis model with logistic growth and general indirect signal production. J. Math. Anal. Appl. 505, 125613 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lv, W., Wang, Q.: A chemotaxis system with signal-dependent motility, indirect signal production and generalized logistic source Global existence and asymptotic stabilization. J. Math. Anal. Appl. 488, 124108 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mimura, M., Tsujikawa, T.: Aggregating pattern dynamics in a chemotaxis model including growth. Phys. A 230, 449–543 (1996)

    Article  Google Scholar 

  21. Nagai, T., Senba, T., Yoshida, K.: Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis. Funkcial. Ekvac. 40, 411–433 (1997)

    MathSciNet  MATH  Google Scholar 

  22. Osaki, K., Yagi, A.: Finite dimensional attractor for one-dimensional Keller-Segel equations. Funkcial. Ekvac. 44, 441–469 (2001)

    MathSciNet  MATH  Google Scholar 

  23. Ren, G.: Global solvability in a two-species chemotaxis system with logistic source. J. Math. Phys. 62, 041504 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ren, G., Liu, B.: Global boundedness of solutions to a chemotaxis-fluid system with singular sensitivity and logistic source. Commun. Pure Appl. Anal. 19(7), 3843–3883 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ren, G., Liu, B.: Global dynamics for an attraction-repulsion chemotaxis model with logistic source. J. Differ. Equ. 268(8), 4320–4373 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ren, G., Liu, B.: Global solvability and asymptotic behavior in a two-species chemotaxis system with Lotka-Volterra competitive kinetics. Math. Models Methods Appl. Sci. 31(5), 941–978 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  27. Strohm, S., Tyson, R.C., Powell, J.A.: Pattern formation in a model for mountain pine beetle dispersal: linking model predictions to data. Bull. Math. Biol. 75, 1778–1797 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Tao, Y., Winkler, M.: Large time behavior in a multidimensional chemotaxis-haptotaxis model with slow signal diffusion. SIAM J. Math. Anal. 47, 4229–4250 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Tello, J., Winkler, M.: A chemotaxis system with logistic source. Comm. Partial Differ. Equ. 32, 849–877 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Tello, J., Wrzosek, D.: Predator-prey model with diffusion and indirect prey-taxis. Math. Models Methods Appl. Sci. 26(11), 2129–2162 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Temam, R.: Navier-Stokes equations: theory and numerical analysis, studies in mathematics and its applications. North-Holland, Amsterdam (1977)

    MATH  Google Scholar 

  32. Viglialoro, G.: Very weak global solutions to a parabolic-parabolic chemotaxis-system with logistic source. J. Math. Anal. Appl. 439, 197–212 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang, W.: A quasilinear fully parabolic chemotaxis system with indirect signal production and logistic source. J. Math. Anal. Appl. 477, 488–522 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang, Y., Winkler, M., Xiang, Z.: Global solvability in a three-dimensional Keller-Segel-Stokes system involving arbitrary superlinear logistic degradation. Adv. Nonlinear Anal. 10, 707–731 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  35. Winkler, M.: Chemotaxis with logistic source: very weak global solutions and their boundedness properties. J. Math. Anal. Appl. 348, 708–729 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Winkler, M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model. J. Differ. Equ. 248, 2889–2905 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Winkler, M.: Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source. Comm. Partial Differ. Equ. 35, 1516–1537 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Winkler, M.: Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction. J. Math. Anal. Appl. 384, 261–272 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Winkler, M.: Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system. J. Math. Pures Appl. 100, 748–767 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Winkler, M.: Large-data global generalized solutions in a chemotaxis system with tensor-valued sensitivities. SIAM J. Math. Anal. 47(4), 3092–3115 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. Winkler, M.: Stabilization in a two-dimensional chemotaxis-Navier-Stokes system. Arch. Ration. Mech. Anal. 211, 455–487 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. Winkler, M.: Global weak solutions in a three-dimensional chemotaxis-Navier-Stokes system. Ann. Inst. H. Poincaré Anal. Non Linéaire 33, 1329–1352 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  43. Winkler, M.: Finite-time blow-up in low-dimensional Keller-Segel systems with logistic-type superlinear degradation. Z. Angew. Math. Phys. 69, 40 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  44. Winkler, M.: A three-dimensional Keller-Segel-Navier-Stokes system with logistic source: global weak solutions and asymptotic stabilization. J. Funct. Anal. 276(5), 1339–1401 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  45. Winkler, M.: Global generalized solutions to a multi-dimensional doubly tactic resource consumption model accounting for social interactions. Math. Models Methods Appl. Sci. 29(3), 373–418 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  46. Winkler, M.: Attractiveness of constant states in logistic-type Keller-Segel systems involving subquadratic growth restrictions. Adv. Nonlinear Stud. 20(4), 795–817 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  47. Winkler, M.: Blow-up profiles and life beyond blow-up in the fully parabolic Keller-Segel system. J. Anal. Math. 141, 585–624 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  48. Winkler, M.: Small-mass solutions in the two-dimensional Keller-Segel system coupled to the Navier-Stokes equations. SIAM J. Math. Anal. 52(2), 2041–2080 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  49. Winkler, M.: The role of superlinear damping in the construction of solutions to drift-diffusion problems with initial data in \(L^1\). Adv. Nonlinear Anal. 9, 526–566 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  50. Winkler, M.: Does Leray’s structure theorem withstand buoyancydriven chemotaxis-fluid interaction. J.Eur. Math. Soc. (2022). https://doi.org/10.4171/JEMS/1226

  51. Winkler, M.: \(L^1\) solutions to parabolic Keller-Segel systems involving arbitrary superlinear degradation. Ann. Sc. Norm. Super. Pisa Cl. Sci. (2021). https://doi.org/10.2422/2036-2145.202005_016

  52. Xiang, T.: Chemotactic aggregation versus logistic damping on boundedness in the 3D minimal Keller-Segel Model. SIAM J. Appl. Math. 78(5), 2420–2438 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  53. Xiang, T.: How strong a logistic damping can prevent blow-up for the minimal Keller-Segel chemotaxis system? J. Math. Anal. Appl. 459, 1172–1200 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  54. Zhang, W., Niu, P., Liu, S.: Large time behavior in a chemotaxis model with logistic growth and indirect signal production. Nonlinear Anal. Real World Appl. 50, 484–497 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  55. Zheng, P.: Asymptotic stability in a chemotaxis-competition system with indirect signal production. Discret. Contin. Dyn. Syst. Ser. A 41(3), 1207–1223 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  56. Zhigun, A.: Generalized global supersolutions with mass control for systems with taxis. SIAM J. Math. Anal. 51, 2425–2443 (2019)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank Professor Michael Winkler for sharing his preprint [51] and express his gratitude to Professor Bin Liu for helpful discussions during the preparation of the paper as well as the anonymous reviewers and editors for their valuable comments and suggestions which led to the improvement of the original manuscript. Guoqiang Ren is partially supported by the National Natural Science Foundation of China (No. 12001214) and the Fundamental Research Funds for the Central Universities (Grant No. 3004011139).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoqiang Ren.

Additional information

Communicated by A. Mondino.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, G. Global solvability in a Keller-Segel-growth system with indirect signal production. Calc. Var. 61, 207 (2022). https://doi.org/10.1007/s00526-022-02313-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-022-02313-5

Mathematics Subject Classification

Navigation