Skip to main content
Log in

Orientability and asymptotic convergence of Q-tensor flow of biaxial nematic liquid crystals

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In recent paper, we will consider two contents on the maximal biaxial nematic liquid crystals. In the first part, we get an orientability issue, that is if \(Q\in W^{1,p}(\Omega ,\mathcal {N}),\) \(p\ge 2,\) then there is \((n,m)\in \mathcal {M}\) with \(n,m\in W^{1,p}(\Omega ),\) such that \(Q=r(n\otimes n-m\otimes m).\) Unlike \(\mathbb {S}^2,\) the set \(\mathcal {M}\) is not simple connect. Our orientability result extends to maximal biaxial nematics from earlier conclusions corresponding to uniaxial nematics in Ball and Zarnescu (Arch Rational Mech Anal 202:493–535, 2011). In the second part, we study an asymptotic convergence of approximate solutions \(Q_\epsilon \) of the Q-tensor flow in \(\mathbb {R}^3\) as the parameter \(\epsilon \) goes to zero. The limiting direction map (nm) satisfies a gradient flow, which is different from the heat flow of harmonic map that takes value into \(\mathbb {S}^2\) or \(\mathcal {M}.\) A partial regularity of this gradient flow is also derived. We extend the works in Ball and Zarnescu (Arch Rational Mech Anal 202:493–535, 2011) and Wang et al. (Arch Rational Mech Anal 225:663–683, 2017) to the maximal biaxial nematic liquid crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abels, H., Dolzmann, G., Liu, Y.: Well-posedness of a fully coupled Navier–Stokes/Q-tensor system with inhomogeneous boundary data. SIAM J. Math. Anal. 46, 3050–3077 (2014)

    Article  MathSciNet  Google Scholar 

  2. Allender, D., Longa, L.: Landau-de Gennes theory of biaxial nematics reexamined. Phys. Rev. E 78, 011704 (2008)

    Article  Google Scholar 

  3. Bauman, P., Park, J., Phillips, D.: Analysis of nematic liquid crystals with disclination lines. Arch. Rational Mech. Anal. 205, 795–826 (2012)

    Article  MathSciNet  Google Scholar 

  4. Ball, J., Majumdar, A.: Nematic liquid crystals: from Maier-Saupe to a continuum theory. Mol. Cryst. Liq. Cryst. 525, 1–11 (2010)

    Article  Google Scholar 

  5. Ball, J., Zarnescu, A.: Orientability and energy minimization in liquid crystal models. Arch. Rational Mech. Anal. 202, 493–535 (2011)

    Article  MathSciNet  Google Scholar 

  6. Canevari, G.: Line defects in the small elastic constant limits of a three-dimensional Landau-de Gennes model. Arch. Rational Mech. Anal. 223, 591–676 (2017)

    Article  MathSciNet  Google Scholar 

  7. Chen, Y., Lin, F.: Evolution of harmonic maps with Dirichlet boundary conditions. Comm. Anal. Geom. 3, 327–346 (1993)

    Article  MathSciNet  Google Scholar 

  8. Canevari, G., Majumdar, A., Stroffolini, B.: Minimizers of a Landau-de Gennes energy with a subquadratic elastic energy. Arch. Rational Mech. Anal. 233, 1169–1210 (2019)

    Article  MathSciNet  Google Scholar 

  9. Cavaterra, C., Rocca, E., Wu, H., Xu, X.: Global strong solutions of the full Navier–Stokes and Q-tensor system for nematic liquid crystal flows in two dimensions. SIAM J. Math. Anal. 48, 1368–1399 (2016)

    Article  MathSciNet  Google Scholar 

  10. Chen, Y., Struwe, M.: Existence and partial regularity results for the heat flow for harmonic maps. Math. Zeit. 201, 83–103 (1989)

    Article  MathSciNet  Google Scholar 

  11. Davis, T., Gartland, E.: Finite element analysis of the Landau-de Gennes minimization problem for liquid crystals. SIAM J. Numer. Anal. 35(1), 336–362 (1998)

    Article  MathSciNet  Google Scholar 

  12. Du, H., Hu, X., Wang, C.: Suitable weak solutions for the co-rotational Beris–Edwards system in dimension three. Arch. Rational Mech. Anal. 238, 749–803 (2020)

    Article  MathSciNet  Google Scholar 

  13. Ding, S., Huang, J., Lin, J.: Unique continuation for stationary and dynamical Q-tensor system of nematic liquid crystals in dimension three. J. Diff. Equ. 275, 447–472 (2021)

    Article  MathSciNet  Google Scholar 

  14. Dipasquale, F., Millot, V., Pisante, A.: Tous-like solutions for the Landau-de Gennes model. part I: the Lyuksyutov regime. Arch. Rational Mech. Anal. 239, 599–678 (2021)

    Article  MathSciNet  Google Scholar 

  15. De Gennes, P.G.: The Physics of Liquid Crystals. Clarendon Press, Oxford (1974)

    MATH  Google Scholar 

  16. Gong, W., Lin, J.: Existence of solutions to incompressible biaxial nematic liquid crystals flows. Appl. Anal. (2021). https://doi.org/10.1080/00036811.2021.1909723

    Article  Google Scholar 

  17. Gramsbergena, E., Longa, L., de Jeu, W.: Landau theory of the nematic-isotropic phase transition. Phys. Rep. 135, 195–257 (1986)

    Article  Google Scholar 

  18. Huang, J., Ding, S.: Global well-posedness for the dynamic Q-tensor model of liquid crystals. Sci. China. Math. 58, 1349–1366 (2015)

    Article  MathSciNet  Google Scholar 

  19. Huang, T., Zhao, N.: On the regularity of weak small solution of a gradient flow of the Landau de Gennes energy. Proc. Am. Math. Soc. 147, 1687–1698 (2019)

    Article  MathSciNet  Google Scholar 

  20. Lin, J., Li, Y., Wang, C.: On static and hydrodynamic biaxial nematic liquid crystals, arXiv:2006.04207 (2020)

  21. Li, S., Xu, J.: Frame hydrodynamics of biaxial nematics from molecular-theory-based tensor models, arXiv:2110.12137v1

  22. Lin, F., Wang, C.: The Analysis of Harmonic Maps and Their Heat Flows. World Scientific, Singapore (2008)

    Book  Google Scholar 

  23. Lin, F., Wang, C.: Recent developments of analysis for hydrodynamic flow of nematic liquid crystals. Philosoph. Trans. 372, 2029 (2014)

    MathSciNet  Google Scholar 

  24. Majumdar, A.: The Landau de Gennes theory of nematic liquid crystals: uniaxiality versus biaxiality. Comm. Pure Appl. Anal. 11, 1303–1337 (2013)

    Article  MathSciNet  Google Scholar 

  25. Majumdar, A., Milewski, P., Spicer, A.: Front Propagation at the Nematic-Isotropic Transition Temperature. SIAM J. Appl. Math. 76, 1296–1320 (2016)

    Article  MathSciNet  Google Scholar 

  26. Majumdar, A., Zarnescu, A.: Landauc de Gennes theory of nematic liquid crystals: the Oseen-Frank limit and beyond. Arch. Rational Mech. Anal. 196, 227–280 (2010)

    Article  MathSciNet  Google Scholar 

  27. Mottram, N.J., Newton, C.: Introduction to Q-tensor theory, University of Strathclyde, Department of Mathematics, Research Report, 10 (2004)

  28. Parzad, M., Riviere, T.: Weak density of smooth maps for Dirichlet energy between manifolds. Geom. Funct. Anal. 13, 223–257 (2003)

    Article  MathSciNet  Google Scholar 

  29. Stewart, Iain W.: Continuum Theory of Biaxial Nematic Liquid Crystals. In: Luckhurst, Geoffrey R., Sluckin, Timothy J. (eds.) Biaxial Nematic Liquid Crystals, Theory, Simulation and Experiment, pp. 185–203. Wiley, New York (2015)

    Google Scholar 

  30. Struwe, M.: On the evolution of harmonic maps in high dimension. J. Diff. Geom. 28, 485–502 (1988)

    MATH  Google Scholar 

  31. Severing, K., Saalwachter, K.: Biaxial nematic phase in a thermotropic liquid-crystalline side-chain polymer. Phys Rev Lett. 92, 125501 (2004)

    Article  Google Scholar 

  32. Wang, M., Wang, W., Zhang, Z.: From the Q-tensor flow for the liquid crystal to the hamonic map flow. Arch. Rational Mech. Anal. 225, 663–683 (2017)

    Article  MathSciNet  Google Scholar 

  33. Wu, H., Xu, X., Zarnescu, A.: Dynamics and flow effects in the Beris-Edwards system modeling nematic liquid crystals. Arch. Ration. Mech. Anal. 231, 1217–1267 (2019)

    Article  MathSciNet  Google Scholar 

  34. Wang, W., Zhang, P., Zhang, Z.: Rigorous derivation from Landau-de Gennes theory to Ericksen-Leslie theory. SIAM J. Math. Anal. 47, 127–158 (2015)

    Article  MathSciNet  Google Scholar 

  35. Zhu, L., Lin, J.: Existence and uniqueness of solution to one-dimensional compressible biaxial nematic. J. Appl. Math. Phy. 73, 37 (2022)

    MATH  Google Scholar 

Download references

Acknowledgements

Huang is partially supported by National Natural Science Foundation of China (Nos. 11971357 and 11771155), the Natural Science Foundation of Guangdong Province (No. 2019A1515011491), and the Innovation Project of Department of Education of Guangdong Province (No. 2019KTSCX183), Lin is partially supported by National Natural Science Foundation of China (No. 11571117).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junyu Lin.

Additional information

Communicated by F.-H. Lin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Derivation of system (1.10)

Appendix A. Derivation of system (1.10)

Our goal of this section is to derive (1.10).

In fact, let \(\lambda _1\) and \(\lambda _2\) be two Lagrange multipliers corresponding to the constraint \(|n|=1\) and \(|m|=1\) respectively and \(\mu \) be the Lagrange multiplier corresponding to the constraint \(n\cdot m=0.\) For any \(\varphi \in C^{\infty }_c(\mathbb {R}^3,\mathbb {R}^3),\) consider

$$\begin{aligned}&\frac{d}{ds}|_{s=0}\int _{\Omega }[\frac{1}{2}|\nabla (n+s\varphi )|^2+\frac{1}{2}|\nabla m|^2+|(n+s\varphi )\cdot \nabla m|^2+\lambda _1(1-|n+s\varphi |^2)\\&\quad +\lambda _2(1-|m|^2)+\mu (n+s\varphi )\cdot m]dx=0 \end{aligned}$$

and

$$\begin{aligned}&\frac{d}{ds}|_{s=0}\int _{\Omega }[\frac{1}{2}|\nabla (m+s\varphi )|^2+\frac{1}{2}|\nabla n|^2+|n\cdot \nabla (m+s\varphi )|^2+\lambda _1(1-|n|^2)\\&\quad +\lambda _2(1-|m+s\varphi |^2)+\mu n\cdot (m+s\varphi )]dx=0. \end{aligned}$$

Then we have

$$\begin{aligned}&\int _{\Omega }\nabla n\cdot \nabla \varphi dx+2\int _{\Omega }(n\cdot \nabla m)\nabla m\cdot \varphi dx=2\int _{\Omega }\lambda _1n\cdot \varphi dx-\int _{\Omega }\mu m\cdot \varphi dx, \end{aligned}$$
(A.1)
$$\begin{aligned}&\int _{\Omega }\nabla m\cdot \nabla \varphi dx+2\int _{\Omega }(n\cdot \nabla m)(n\cdot \nabla \varphi )dx=2\int _{\Omega }\lambda _2m\cdot \varphi dx-\int _{\Omega }\mu n\cdot \varphi dx. \end{aligned}$$
(A.2)

By \(n\cdot m=0\) and \(|n|=|m|=1,\) taking \(\varphi =\eta n\) in (A.1) and (A.2), where \(\eta \) is a smooth cut-off function, we get that

$$\begin{aligned} \lambda _1=\frac{1}{2}|\nabla n|^2+|n\cdot \nabla m|^2 \end{aligned}$$

and

$$\begin{aligned} \int _{\Omega }\mu \eta dx= & {} -\int _{\Omega }\nabla m\cdot \nabla (\eta n)dx-2\int _{\Omega }(n\cdot \nabla m)\nabla \eta dx\nonumber \\= & {} -\int _{\Omega }\nabla m\cdot \nabla n\eta dx-3\int _{\Omega }\nabla m\cdot \nabla \eta n dx, \end{aligned}$$
(A.3)

where we have used \(\nabla m\cdot n=-n\cdot \nabla m\) and \(\nabla n\cdot n=0.\)

Taking \(\varphi =\eta m\) in (A.1) and (A.2), we have

$$\begin{aligned} \lambda _2=\frac{1}{2}|\nabla m|^2+|n\cdot \nabla m|^2 \end{aligned}$$

and

$$\begin{aligned} \ \int _{\Omega }\mu \eta dx=-\int _{\Omega }\nabla n\cdot \nabla m \eta dx-3\int _{\Omega }\nabla n\cdot \nabla \eta m dx. \end{aligned}$$
(A.4)

From (A.3) and (A.4), we have

$$\begin{aligned} \int _{\Omega }\mu \eta dx=-\int _{\Omega }\nabla n\cdot \nabla m \eta dx. \end{aligned}$$

Then we get \(\mu =-\nabla n\cdot \nabla m.\) Hence from (A.3) we also have \(\int _{\Omega }\nabla m\cdot n\nabla \eta dx=0,\) which implies that \(\triangle m\cdot n+\nabla n\cdot \nabla m=0\) in the sense of distribution.

Therefore we have the Euler-Lagrange equation associated with the simple functional \(\int _{\Omega }E(n,m)dx,\)

$$\begin{aligned} {\left\{ \begin{array}{ll}-\triangle n-2(\nabla n\cdot m)\nabla m=|\nabla n|^2n+2|n\cdot \nabla m|^2n+(\nabla n\cdot \nabla m)m \ \ \text{ in }\ \ \Omega ,\\ -\triangle m-2(\nabla m\cdot n)\nabla n=|\nabla m|^2m+2|n\cdot \nabla m|^2m+(\nabla n\cdot \nabla m)n \ \ \text{ in }\ \ \Omega ,\end{array}\right. } \end{aligned}$$

here we have used \(\triangle m\cdot n=-\nabla n\cdot \nabla m\) and then \(\nabla \cdot [(n\cdot \nabla m)n]=(n\cdot \nabla m)\nabla n.\) Then we obtain the derivation of system (1.10).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Lin, J. Orientability and asymptotic convergence of Q-tensor flow of biaxial nematic liquid crystals. Calc. Var. 61, 173 (2022). https://doi.org/10.1007/s00526-022-02272-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-022-02272-x

Mathematics Subject Classification

Navigation