Skip to main content
Log in

Suitable Weak Solutions for the Co-rotational Beris–Edwards System in Dimension Three

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In this paper, we establish the global existence of a suitable weak solution to the co-rotational Beris–Edwards Q-tensor system modeling the hydrodynamic motion of nematic liquid crystals with either Landau–De Gennes bulk potential in \({\mathbb {R}}^3\) or Ball–Majumdar bulk potential in \(\mathbb {T}^3\), a system coupling the forced incompressible Navier–Stokes equation with a dissipative, parabolic system of Q-tensor Q in \({\mathbb {R}}^3\), which is shown to be smooth away from a closed set \(\Sigma \) whose 1-dimensional parabolic Hausdorff measure is zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Strictly speaking, we need to take finite quotient \(D_h^j\) of (1.6) \((j=1,2,3\)) and then send \(h\rightarrow 0\).

  2. Strictly speaking, we need to multiply \(\Delta (D^j_h Q)\eta ^2\) and \(\nabla (D_h^j\mathbf{u})\eta ^2\) and then send \(h\rightarrow 0\).

References

  1. Abels, H., Dolzmann, G., Liu, Y.: Well-posedness of a fully coupled Navier–Stokes/Q-tensor system with inhomogeneous boundary data. SIAM J. Math. Anal. 46(4), 3050–3077, 2014

    MathSciNet  MATH  Google Scholar 

  2. Abels, H., Dolzmann, G., Liu, Y.: Strong solutions for the Beris–Edwards model for nematic liquid crystals with homogeneous Dirichlet boundary conditions. Adv. Differ. Equ. 21(1–2), 109–152, 2016

    MathSciNet  MATH  Google Scholar 

  3. Ball, J., Majumdar, A.: Nematic liquid crystals: from Maier–Saupe to a continuum theory. Mol. Cryst. Liq. Cryst. 525(1), 1–11, 2010

    Google Scholar 

  4. Beris, A., Edwards, B.: Thermodynamics of Flowing Systems: With Internal Microstructure. Oxford University Press, Oxford 1994

    Google Scholar 

  5. Caffarelli, L., Kohn, R., Nirenberg, L.: Partial regularity of suitable weak solutions of the Navier–Stokes equations. Commun. Pure Appl. Math. 35, 771–831, 1982

    ADS  MathSciNet  MATH  Google Scholar 

  6. Cavaterra, C., Rocca, E., Wu, H., Xu, X.: Global strong solutions of the full Navier–Stokes and Q-tensor system for nematic liquid crystal flows in two dimensions. SIAM J. Math. Anal. 48, 1368–1399, 2016

    MathSciNet  MATH  Google Scholar 

  7. Constantin, P., Kiselev, A., Ryzhik, L., Zlatos, A.: Diffusion and mixing in fluid flow. Ann. Math. (2) 168(2), 643–674, 2008

    MathSciNet  MATH  Google Scholar 

  8. De Gennes, P., Prost, J.: The Physics of Liquid Crystals, 2nd edn. Oxford University Press, Oxford 1995

    Google Scholar 

  9. Ding, S., Huang, J.: Global well-posedness for the dynamical Q-tensor model of liquid crystals. Sci. China Math. 58(6), 1349–1366, 2015

    MathSciNet  MATH  Google Scholar 

  10. Doi, M., Edwards, S.F.: The Theory of Polymer Dynamics. Oxford University Press, Oxford 1988

    Google Scholar 

  11. Ekeland, I., Temam, R.: Convex Analysis and Variational Problems, vol. 1. Studies in Mathematics and its ApplicationsNorth-Holland, Amsterdam 1976

    MATH  Google Scholar 

  12. Ericksen, J.: Conservation laws for liquid crystals. Trans. Soc. Rheol. 5, 22–34, 1961

    MathSciNet  Google Scholar 

  13. Ericksen, J.: Continuum theory of nematic liquid crystals. Res. Mech. 21, 381–392, 1987

    Google Scholar 

  14. Feireisl, E., Schimperna, G., Rocca, E., Zarnescu, A.: Nonisothermal nematic liquid crystal flows with the Ball–Majumdar free energy. Ann. Mat. Pura Appl. 194, 1269–1299, 2015

    MathSciNet  MATH  Google Scholar 

  15. Guillen-Gonzalez, F., Rodriguez-Bellido, M.: A uniqueness and regularity criterion for Q-tensor models with Neumann boundary conditions. Differ. Integr. Equ. 28, 537–552, 2015

    MathSciNet  MATH  Google Scholar 

  16. Guillen-Gonzalez, F., Rodriguez-Bellido, M.: Weak time regularity and uniqueness for a Q-tensor model. SIAM J. Math. Anal. 46(5), 3540–3567, 2014

    MathSciNet  MATH  Google Scholar 

  17. Hineman, J., Wang, C.: Well-posedness of nematic liquid crystal flow in \(L_{{{\rm uloc}}}^3({\mathbb{R}}^3)\). Arch. Ration. Mech. Anal. 210(1), 177–218, 2013

    MathSciNet  MATH  Google Scholar 

  18. Huang, J., Lin, F., Wang, C.: Regularity and existence of global solutions to the Ericksen–Leslie system in \({\mathbb{R}}^3\). Commun. Math. Phys. 331(2), 805–850, 2014

    ADS  MATH  Google Scholar 

  19. Huang, T., Wang, C.: Notes on the regularity of harmonic map systems. Proc. Am. Math. Soc. 138(6), 2015–2023, 2010

    MathSciNet  MATH  Google Scholar 

  20. Ladyzhenskaya, O.A., Solonnikov, V.A., Uralćeva, N.N.: Linear and Quasi-linear Equations of Parabolic Type. American Mathematical Society, Providence, RI 1968

    Google Scholar 

  21. Leray, J.: Sur le mouvement dún liquide visqueux emplissant léspace. Acta. Math. 63, 183–248, 1934

    Google Scholar 

  22. Leslie, F.M.: Some constitutive equations for liquid crystals. Arch. Ration. Mech. Anal. 28, 265–283, 1968

    MathSciNet  MATH  Google Scholar 

  23. Lin, F.: A new proof of the Caffarelli–Kohn–Nirenberg theorem. Commun. Pure Appl. Math. 51, 241–257, 1998

    MathSciNet  MATH  Google Scholar 

  24. Lin, F., Liu, C.: Nonparabolic dissipative systems modeling the flow of liquid crystals. Commun. Pure Appl. Math. 48, 501–537, 1995

    MathSciNet  MATH  Google Scholar 

  25. Lin, F., Liu, C.: Partial regularity of the dynamic system modeling the flow of liquid crystals. Discret. Contin. Dyn. Syst. 2, 1–22, 1996

    MathSciNet  MATH  Google Scholar 

  26. Lin, F., Lin, J., Wang, C.: Liquid crystal flows in two dimensions. Arch. Ration. Mech. Anal. 197, 297–336, 2010

    MathSciNet  MATH  Google Scholar 

  27. Lin, F., Wang, C.: Recent developments of analysis for hydrodynamic flow of nematic liquid crystals. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 372, 20130361, 2014

    ADS  MathSciNet  MATH  Google Scholar 

  28. Lin, F., Wang, C.: Global existence of weak solutions of the nematic liquid crystal flow in dimension three. Commun. Pure Appl. Math. 69(8), 1532–1571, 2016

    MathSciNet  MATH  Google Scholar 

  29. Mottram, J., Newton, C.: Introduction to \(Q\)-tensor Theory. University of Strathclyde, Department of Mathematics, Research Report, 10 (2004)

  30. Paicu, M., Zarnescu, A.: Energy dissipation and regularity for a coupled Navier–Stokes and Q-tensor system. Arch. Ration. Mech. Anal. 203, 45–67, 2012

    MathSciNet  MATH  Google Scholar 

  31. Paicu, M., Zarnescu, A.: Global existence and regularity for the full coupled Navier–Stokes and Q-tensor system. SIAM J. Math. Anal. 43, 2009–2049, 2011

    MathSciNet  MATH  Google Scholar 

  32. Scheffer, V.: Partial regularity of solutions to the Navier–Stokes equations. Pac. J. Math. 66, 535–552, 1976

    MathSciNet  MATH  Google Scholar 

  33. Sonnet, A.M., Virga, E.G.: Dissipative Ordered Fluids: Theories for Liquid Crystals. Springer, New York 2012

    MATH  Google Scholar 

  34. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions (PMS-30). Princeton University Press, Princeton 2016

    Google Scholar 

  35. Temam, R.: Navier–Stokes Equations: Theory and Numerical Analysis. American Mathematical Society, Providence, RI 2001

    MATH  Google Scholar 

  36. Yosida, K.: Functional Analysis. Springer, Berlin 1980

    MATH  Google Scholar 

  37. Wang, W., Zhang, P., Zhang, Z.: Rigorous derivation from Landau–De Gennes theory to Ericksen–Leslie theory. SIAM J. Math. Anal. 47(1), 127–158, 2015

    MathSciNet  MATH  Google Scholar 

  38. Wilkinson, M.: Strictly physical global weak solutions of a Navier–Stokes Q-tensor system with singular potential. Arch. Ration. Mech. Anal. 218(1), 487–526, 2015

    MathSciNet  MATH  Google Scholar 

  39. Wu, H., Xu, X., Zarnescu, A.: Dynamics and flow effects in the Beris–Edwards system modeling nematic liquid crystals. Arch. Ration. Mech. Anal. 231, 1217–1267, 2019

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Both the first and third authors are partially supported by NSF Grant 1764417. The second author is partially supported by the GRF grant (Project No. CityU 11332216). The third author wishes to express his gratitude to Professor Fanghua Lin for helpful discussions related to the blowing up argument in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changyou Wang.

Additional information

Communicated by F. Lin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, H., Hu, X. & Wang, C. Suitable Weak Solutions for the Co-rotational Beris–Edwards System in Dimension Three. Arch Rational Mech Anal 238, 749–803 (2020). https://doi.org/10.1007/s00205-020-01554-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-020-01554-y

Navigation