Skip to main content
Log in

Stability of smooth multi-solitons for the Camassa–Holm equation

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Consideration in this paper is the stability of exact smooth multi-solitons for the Camassa–Holm equation. By constructing a suitable Lyapunov functional, it is found that the smooth multi-solitons are non-isolated constrained minimizers satisfying a suitable variational nonlocal elliptic equation and the dynamical stability issue is reduced to study of the spectrum of explicit linearized systems. Our approach in the spectral analysis consists in an invariant for the multi-solitons and new operator identities motivated by the bi-Hamilton structure of the Camassa–Holm equation. The key ingredient in the spectral analysis is to use integrable property of the recursion operator of the Camassa–Holm equation. It is demonstrated here that orbital stability of shape of smooth single soliton implies that the shapes of all smooth multi-solitons are dynamically stable under small disturbances in a suitable Sobolev space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beals, R., Sattinger, D., Szmigielski, J.: Acoustic scattering and the extended Korteweg-de Vries hierarchy. Adv. Math. 140, 190–206 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Benjamin, T.B.: The stability of solitary waves. Proc. Roy. Soc. A 328, 153–183 (1972)

    MathSciNet  Google Scholar 

  3. Bressan, A., Constantin, A.: Global conservative solutions to the Camassa-Holm equation. Arch. Rat. Mech. Anal. 183, 215–239 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bressan, A., Chen, G., Zhang, Q.: Uniqueness of conservative solutions to the Camassa-Holm equation via characteristics. Discr. Cont. Dyn. Syst. 35, 25–42 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Camassa, R., Holm, D.D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Camassa, R., Holm, D., Hyman, J.: A new integrable shallow water equation. Adv. Appl. Mech. 31, 1–33 (1994)

    Article  MATH  Google Scholar 

  7. Cao, C.S., Holm, D.D., Titi, E.S.: Traveling wave solutions for a class of one-dimensional nonlinear shallow water wave models. J. Dyn. Differ. Equ. 16, 167–178 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Casati, P., Lorenzoni, P., Ortenzi, G., Pedroni, M.: On the local and nonlocal Camassa-Holm Hierarchies. J. Math. Phys. 46, 042704 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Constantin, A.: On the inverse spectral problem for the Camassa-Holm equation. J. Funct. Anal. 155, 352–363 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Constantin, A.: Existence of permanent and breaking waves for a shallow water equation: a geometric approach. Ann. Inst. Fourier 50, 321–362 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Constantin, A.: On the scattering problem for the Camassa-Holm equation. Proc. Roy. Soc. Lond. A. 457, 953–970 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Constantin, A., Escher, J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 181, 229–243 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Constantin, A., Escher, J.: Global existence and blow-up for a shallow water equation. Annali Sc. Norm. Sup. Pisa. 26, 303–328 (1998)

    MathSciNet  MATH  Google Scholar 

  14. Constantin, A., Gerdjikov, V., Ivanov, R.: Inverse scattering transform for the Camassa-Holm equation. Inv. Probl. 22, 2197–2207 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Constantin, A., Gerdjikov, V., Ivanov, R.: Generalized Fourier transform for the Camassa-Holm hierarchy. Inv. Probl. 23(4), 1565–1597 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Constantin, A., Ivanov, R.: Poisson structure and action-angle variables for the Camassa-Holm equation. Lett. Math. Phys. 76, 93–108 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Constantin, A., Kolev, B.: On the geometric approach to the motion of inertial mechanical systems. J. Phys. A Math. Gen. 35, R51–R79 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Constantin, A., Kolev, B.: Geodesic flow on the diffeomorphism group of the circle. Comment. Math. Helv. 78, 787–804 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Constantin, A., Lannes, D.: The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations. Arch. Rational Mech. Anal. 192, 165–186 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Constantin, A., McKean, H.P.: A shallow water equation on the circle. Commun. Pure Appl. Math. 52, 949–982 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Constantin, A., Molinet, L.: Global weak solutions for a shallow water equation. Comm. Math. Phys. 211, 45–61 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Constantin, A., Strauss, W.: Stability of peakons. Commun. Pure Appl. Math. 53, 603–610 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Constantin, A., Strauss, W.: Stability of the Camassa-Holm solitons. J. Nonlin. Sci. 12, 415–422 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. El Dika, K., Molinet, L.: Exponential decay of \(H^1\)-localized solutions and stability of the train of \(N\) solitary waves for the Camassa-Holm equation. Phil. Trans. Roy. Soc. A. 365, 2313–2331 (2007)

    MATH  Google Scholar 

  25. El Dika, K., Molinet, L.: Stability of multipeakons. Ann. I. H. Poincaré. 26, 1517–1532 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Fisher, M., Shiff, J.: The Camassa Holm equation: conserved quantities and the initial value problem. Phys. Lett. A 259, 371–376 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  27. Fuchssteiner, B., Fokas, A.S.: Symplectic structures, their Bäcklund transformations and hereditary symmetries. Physica D 4, 47–66 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  28. Grillakis, M., Shatah, J., Strauss, W.: Stability theory of solitary waves in the presence of symmetry I. J. Funct. Anal. 74, 160–197 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  29. Grunert, K., Holden, H., Raynaud, X.: Global conservative solutions to the Camassa-Holm equation for initial data with nonvanishing asymptotics. Disc. Contin. Dyn. Syst. 32, 4209–4227 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ivanov, R.I.: Extended Camassa-Holm hierarchy and conserved quantities. Zeitschrift für Naturforschung 61a, 199–205 (2006)

    MATH  Google Scholar 

  31. Johnson, R.S.: Camassa-Holm, Korteweg-de Vries and related models for water waves. J. Fluid. Mech. 457, 63–82 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. Johnson, R.S.: On solutions of the Camassa-Holm equation. Proc. Roy. Soc. Lond. A. 459, 1687–1708 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kapitula, T.: On the stability of \(N\)-solitons in integrable systems. Nonlinearity 20, 879–907 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lax, P.D.: Periodic solutions of the KdV equation. Commune Pure Appl. Math. 28, 141–188 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lenells, J.: Conservation laws of the Camassa-Holm equation. J. Phys. A Math. Gen. 38, 869–880 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  36. Le Coz, S., Wang, Z.: Stability of multi-solitons of the modified Korteweg-de Vries equation. Nonlinearity 34, 7109–7143 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  37. Li, Y., Zhang, J.: The multiple-soliton solutions of the Camassa-Holm equation. Proc. Roy. Soc. Lond. A 460, 2617–2627 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  38. Li, Y.A., Olver, P.J.: Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation. J. Differ. Equ. 162(1), 2–63 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  39. Lin, Z., Zeng, C.: Instability, index theorem, and exponential trichotomy for linear Hamiltonian PDEs. arXiv:1703.04016v1 (math.AP) , (2017) pg 175

  40. Linares, F., Ponce, G., Sideris, T.: Properties of solutions to the Camassa- Holm equation on the line in a class containing the peakons. Adv. Stud. Pure Math. Asymp. Anal. Nonlinear Dispers. Wave Equ. 81, 196–245 (2019)

    MathSciNet  MATH  Google Scholar 

  41. Maddocks, J.H., Sachs, R.L.: On the stability of KdV multi-solitons. Commune Pure Appl. Math. 46, 867–901 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  42. Martel, Y., Merle, F., Tsai, T.P.: Stability and asymptotic stability in the energy space of the sum of \(N\) solitons for subcritical gKdV equations. Commune Math. Phys. 231, 347–373 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  43. Matsuno, Y.: Parametric representation for the multisoliton solution of the Camassa-Holm equation. J. Phys. Soc. Jpn. 74, 1983–1987 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  44. McKean, H.P.: Breakdown of a shallow water equation. Asian J. Math. 2, 867–874 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  45. Misiolek, G.: A shallow water equation as a geodesic flow on the Bott-Virasoro group. J. Geom. Phys. 24, 203–208 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  46. Neves, A., Lopes, O.: Orbital stability of double solitons for the Benjamin-Ono equation. Commune Math. Phys. 262, 757–791 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  47. Vaninsky, K.L.: Equations of Camassa-Holm type and Jacobi ellipsoidal coordinates. Commune Pure Appl. Math. 58, 1149–1187 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  48. Xin, Z., Zhang, P.: On the weak solutions to a shallow water equation. Commune Pure Appl. Math. 53, 1411–1433 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work of Liu is partially supported by the Simons Foundation under grant 499875. The work of Wang is partially supported by the NSF of China under grant 11901092 and NSF of Guangdong under grant 2017A030310634.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Liu.

Additional information

Communicated by P. H. Rabinowitz.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The tools presented in this section have been developed in [34, 36, 46]. It is noted that the work of Neves and Lopes [46] was devoted to the case of the double solitons and [36] extends their results to the case of N-solitons with N an arbitrary integer. For the sake of completeness, we give the most relevant elements of the statement only and refer to [34, 36, 46] for the details of the proof and further discussion.

1.1 Iso-inertial family of operators

We will be working with linearized operators around a multi-soliton, which fit in the following more generic framework.

Consider the abstract evolution equation

$$\begin{aligned} \frac{du}{dt} =f(u), \end{aligned}$$
(4.23)

for \(u : \mathbb {R}\rightarrow X\), and recall that the following framework was set in [34, 46]. Let \(X_2\subset X_1\subset X\) be Hilbert spaces and \(V : X_1\rightarrow \mathbb {R}\) be such that the following assumptions are verified.

(H1) \(X_2\subset X_1\subset X\) are continuously embedded. The embedding from \(X_2\) to \(X_1\) is denoted by i.

(H2) The functional \(V: X_1\rightarrow \mathbb {R}\) is \({\mathcal {C}}^3\).

(H3) The function \(f: X_2\rightarrow X_1\) is \({\mathcal {C}}^2\).

(H4) For any \(u\in X_2\), we have \( V'(i(u))f(u)=0. \) Moreover, given \(u \in {\mathcal {C}}^1(\mathbb {R}, X_1)\cap {\mathcal {C}}(\mathbb {R}, X_2)\) a strong solution of (4.23), we assume that there exists a self-adjoint operator \(L(t) : D(L) \subset X\rightarrow X\) with domain D(L) independent of t such that for \(h, k \in Z\), where \(Z\subset D(L)\cap X_2\) is a dense subspace of X, we have \( \displaystyle \langle L(t)h,k\rangle =V''(u(t))(h,k). \) We also consider the operators \(B(t):D(B)\subset X\rightarrow X\) such that for any \(h\in Z\) we have \( B(t)h=-f'(u(t))h.\) Then we assume moreover that

(H5) The closed operators B(t) and \(B^*(t)\) have a common domain D(B) which is independent of t. The Cauchy problems

$$\begin{aligned} \frac{du}{dt} =B(t)u,\quad \frac{dv}{dt} =B^*(t)v, \end{aligned}$$

are well-posed in X for positive and negative times.

We then have the following result (see [34, 46]).

Proposition 4.1

Let \(u\in {\mathcal {C}}^1(\mathbb {R}, X_1)\cap {\mathcal {C}}(\mathbb {R}, X_2)\) be a strong solution of (4.23) and assume that (H1)-(H5) are satisfied. Then the following assertions hold.

\(\bullet \) Invariance of the set of critical points. If there exists \(t_0 \in \mathbb {R}\) such that \(V'(u(t_0))=0\), then \(V'(u(t))=0\) for any \(t\in \mathbb {R}\).

\(\bullet \) Invariance of the inertia. Assume that u is such that \(V'(u(t))=0\) for all \(t\in \mathbb {R}\). Then the inertia in(L(t)) of the operator L(t) representing \(V''(u(t))\) is independent of t.

1.2 Calculation of the inertial

Given an t-dependent family of operators whose inertia we are interested in, Proposition 4.1 allows to choose for a specific t to perform the calculation of the inertia. This is however in most situations not sufficient, as we would like to let t go to infinity and relate the inertia of our family with the inertia of the asymptotic objects that we obtain. This is what is allowed in the following framework.

Let X be a real Hilbert space. Let \(N \in \mathbb {N}\) and \((\tau _n^j)\) be sequences of isometries of X for \(j = 1,\ldots , N\). For brevity in notation, we denote the composition of an isometry \(\tau _n^k\) and the inverse of \(\tau _n^j\) by

$$\begin{aligned} \tau _n^{k/j}:=\tau _n^k(\tau _n^j)^{-1}. \end{aligned}$$

Let \(A, (B^j)_{j=1,\ldots ,N}\) be linear operators and \((R_n)\) be a sequence of linear operators. Define the sequences of operators based on \((B^j)\) and \((\tau _n^j)\) by

$$\begin{aligned} B_n^j=(\tau _n^j)^{-1}B_j(\tau _n^j). \end{aligned}$$

Define the operator \(L_n: D(A)\subset X \rightarrow X \) by

$$\begin{aligned} L_n=A+\sum _{j=1}^NB_n^j+R_n. \end{aligned}$$

We make the following assumptions.

(A1) For all \(j=1,\ldots , N\) and \(n\in \mathbb {N}\), the operators \(A, A + B^j , A + B_n^j\) and \(L_n\) are self-adjoint with the same domain D(A).

(A2) The operator A is invertible. For all \(j=1,\ldots , N\) and \(n\in \mathbb {N}\), the operator A commutes with \(\tau _n^j\) (i.e. \(A=(\tau _n^j)^{-1}A(\tau _n^j)\)).

(A3) There exists \(\delta >0\) such that for all \(j=1,\ldots , N\) and \(n\in \mathbb {N}\), the essential spectrum of \(A, A + B_j , A + B_n^j\) and \(L_n\) are contained in \((\delta , +\infty )\).

(A4) For every \(\lambda \in \cap _{j=1}^N\rho (A+B^j)\) and for all \(j=1,\ldots , N\) the operators \(A(A+B^j-\lambda I)^{-1}\) are bounded.

(A5) In the operator norm, \(\Vert R_nA^{-1}\Vert \rightarrow 0\) as \(n\rightarrow +\infty \).

(A6) For all \(u\in D(A)\) and \(j,k=1,\ldots ,N\) and \(j\ne k\) one has

$$\begin{aligned} \lim _{n\rightarrow +\infty }\Vert \tau _n^{j/k}B^k\tau _n^{k/j}\Vert _X=0. \end{aligned}$$

(A7) For all \(u\in X\) and \(j,k=1,\ldots ,N\) and \(j\ne k\) we have \(\tau _n^{j/k}u\rightharpoonup 0\) weakly in X as \(n\rightarrow \infty \).

(A8) For all \(j=1,\ldots , N\), the operators \(B^jA^{-1}\) is compact.

Theorem 4.1

Assume that assumptions (A1)-(A8) hold and let \(\lambda <\delta \). The following assertions hold.

\(\bullet \) If \(\lambda \in \cap _{j=1}^N\rho (A+B^j)\), then there exists \(n_\lambda \in \mathbb {N}\) such that for all \(n>n_\lambda \) we have \(\lambda \in \rho (L_n)\).

\(\bullet \) If \(\lambda \in \cup _{j=1}^N\sigma (A+B^j)\), then there exists \(\varepsilon _0>0\) such that for all \(0<\varepsilon <\varepsilon _0\) there exists \(n_\varepsilon \in \mathbb {N}\) such that for all \(n > n_\varepsilon \) we have

$$\begin{aligned} dim(Range(P_{\lambda ,\varepsilon }(L_n)))=\sum _{j=1}^Ndim(Range(P_{\lambda ,\varepsilon }(A+B^j))), \end{aligned}$$

where \(P_{\lambda ,\varepsilon }(L)\) is the spectral projection of L corresponding to the circle of center \(\lambda \) and radius \(\varepsilon \).

Corollary 4.2

Under the assumptions of Theorem 4.1, if there exists \(n_L\) such that for all \(n > n_L\) we have

$$\begin{aligned} dim(ker(L_n))\ge \sum _{j=1}^Ndim(ker(A+B^j)), \end{aligned}$$

then for all \(n > n_L\) we have

$$\begin{aligned} in(L_n)=\sum _{j=1}^Nin(A+B^j). \end{aligned}$$

Moreover, a non-zero eigenvalue of \(L_n\) cannot approach 0 as \(n\rightarrow \infty \).

Theorem 4.1 and Corollary 4.2 were proved in [46] in the case \(N=2\). For the proof of general \(N \in \mathbb { N}\) cases, we refer to [36] for details.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Liu, Y. Stability of smooth multi-solitons for the Camassa–Holm equation. Calc. Var. 61, 51 (2022). https://doi.org/10.1007/s00526-021-02175-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-021-02175-3

Mathematics Subject Classification

Navigation