Skip to main content
Log in

Mixed boundary valued problems for linear and nonlinear wave equations in domains with fractal boundaries

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

The weak well-posedness, with the mixed boundary conditions, of the strongly damped linear wave equation and of the non linear Westervelt equation is proved in a large natural class of Sobolev admissible non-smooth domains. In the framework of uniform domains in \(\mathbb {R}^2\) or \(\mathbb {R}^3\) we also validate the approximation of the solution of the Westervelt equation on a fractal domain by the solutions on the prefractals using the Mosco convergence of the corresponding variational forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Adams, D.R., Hedberg, L.I.: Function Spaces and Potential Theory. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 314. Springer, Berlin (1996)

    Book  Google Scholar 

  2. Aikawa, H., Lundh, T., Mizutani, T.: Martin boundary of a fractal domain. Potential Anal. 18(4), 311–357 (2003). https://doi.org/10.1023/A:1021823023212

    Article  MathSciNet  MATH  Google Scholar 

  3. Arendt, W., ter Elst, A.F.M.: Gaussian estimates for second order elliptic operators with boundary conditions. J. Operator Theory 38(1), 87–130 (1997)

    MathSciNet  MATH  Google Scholar 

  4. Arfi, K., Rozanova-Pierrat, A.: Dirichlet-to-Neumann or Poincaré-Steklov operator on fractals described by \(d\)-sets. Discrete Contin. Dyn. Syst. Ser. S 12, 1–26 (2019). https://doi.org/10.3934/dcdss.2019001

    Article  MathSciNet  MATH  Google Scholar 

  5. Azzam, J., Hofmann, S., Martell, J.M., Nyström, K., Toro, T.: A new characterization of chord-arc domains. J. Eur. Math. Soc. (JEMS) 19(4), 967–981 (2017). https://doi.org/10.4171/JEMS/685

    Article  MathSciNet  MATH  Google Scholar 

  6. Bardos, C., Grebenkov, D., Rozanova-Pierrat, A.: Short-time heat diffusion in compact domains with discontinuous transmission boundary conditions. Math. Models Methods Appl. Sci. 26(01), 59–110 (2016). https://doi.org/10.1142/S0218202516500032

    Article  MathSciNet  MATH  Google Scholar 

  7. Barlow, M.T., Hambly, B.M.: Transition density estimates for Brownian motion on scale irregular Sierpinski gaskets. Ann. Inst. H. Poincaré Probab. Stat. 33(5), 531–557 (1997). https://doi.org/10.1016/S0246-0203(97)80104-5

    Article  MathSciNet  MATH  Google Scholar 

  8. Batty, C.J.K., Chill, R., Srivastava, S.: Maximal regularity in interpolation spaces for second-order Cauchy problems. In: Operator semigroups meet complex analysis, harmonic analysis and mathematical physics, Operator Theory: Advances and Applications, vol. 250, pp. 49–66. Birkhäuser/Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18494-4_4

  9. van den Berg, M.: Heat equation on the arithmetic von Koch snowflake. Probab. Theory Related Fields 118(1), 17–36 (2000). https://doi.org/10.1007/PL00008740

    Article  MathSciNet  MATH  Google Scholar 

  10. Biegert, M.: On traces of Sobolev functions on the boundary of extension domains. Proc. Am. Math. Soc. 137(12), 4169–4176 (2009). https://doi.org/10.1090/S0002-9939-09-10045-X

    Article  MathSciNet  MATH  Google Scholar 

  11. Bourgain, J.: Some remarks on Banach spaces in which martingale difference sequences are unconditional. Ark. Mat. 21(2), 163–168 (1983). https://doi.org/10.1007/BF02384306

    Article  MathSciNet  MATH  Google Scholar 

  12. Calderon, A.P.: Lebesgue spaces of differentiable functions and distributions. Proc. Symp. Pure Math. 4, 33–49 (1961)

    Article  MathSciNet  Google Scholar 

  13. Capitanelli, R.: Robin boundary condition on scale irregular fractals. Commun. Pure Appl. Anal. 9(5), 1221–1234 (2010). https://doi.org/10.3934/cpaa.2010.9.1221

    Article  MathSciNet  MATH  Google Scholar 

  14. Capitanelli, R., Vivaldi, M.A.: Insulating layers and Robin problems on Koch mixtures. J. Differ. Equ. 251(4–5), 1332–1353 (2011). https://doi.org/10.1016/j.jde.2011.02.003

    Article  MathSciNet  MATH  Google Scholar 

  15. Chill, R., Srivastava, S.: \(L^p\)-maximal regularity for second order Cauchy problems. Math. Z. 251(4), 751–781 (2005). https://doi.org/10.1007/s00209-005-0815-8

    Article  MathSciNet  MATH  Google Scholar 

  16. Creo, S., Lancia, M.R., Vernole, P., Hinz, M., Teplyaev, A.: Magnetostatic problems in fractal domains. Fractals and Dynamics in Mathematics, Science, and the Arts: Theory and Applications Analysis, Probability and Mathematical Physics on Fractals, pp. 477–502 (2020). https://doi.org/10.1142/9789811215537_0015. https://www.worldscientific.com/doi/10.1142/9789811215537_0015

  17. Daners, D.: Robin boundary value problems on arbitrary domains. Trans. Am. Math. Soc. 352(9), 4207–4236 (2000). https://doi.org/10.1090/S0002-9947-00-02444-2

    Article  MathSciNet  MATH  Google Scholar 

  18. Dekkers, A.: Analyse mathématique de l’équation de Kuznetsov : problème de Cauchy, questions d’approximations et problèmes aux bords fractals. Ph.D. thesis (2019). http://www.theses.fr/2019SACLC019. Mathématiques appliquées, CentraleSupélec, Université Paris Saclay

  19. Dekkers, A., Rozanova-Pierrat, A., Khodygo, V.: Models of nonlinear acoustics viewed as approximations of the Kuznetsov equation. Discrete Contin. Dyn. Syst. A 40, 4231–4258 (2020). https://doi.org/10.3934/dcds.2020179

    Article  MathSciNet  MATH  Google Scholar 

  20. Dekkers, A., Rozanova-Pierrat, A.: Cauchy problem for the Kuznetsov equation. Discrete Contin. Dyn. Syst. Ser. A 39, 277–307 (2019). https://doi.org/10.3934/dcds.2019012

    Article  MathSciNet  MATH  Google Scholar 

  21. Dekkers, A., Rozanova-Pierrat, A.: Dirichlet boundary valued problems for linear and nonlinear wave equations on arbitrary and fractal domains (2020). arXiv:2004.05055

  22. Dekkers, A., Rozanova-Pierrat, A.: Models of nonlinear acoustics viewed as an approximation of the Navier-Stokes and Euler compressible isentropic systems. Commun. Math. Sci. 18(8), 2075–2119 (2020). https://doi.org/10.4310/CMS.2020.v18.n8.a1

    Article  MathSciNet  MATH  Google Scholar 

  23. Evans, L.C.: Partial differential equations, Graduate Studies in Mathematics, vol. 19, 2nd edn. American Mathematical Society, Providence, RI (2010). https://doi.org/10.1090/gsm/019

  24. Even, C., Russ, S., Repain, V., Pieranski, P., Sapoval, B.: Localizations in fractal drums: an experimental study. Phys. Rev. Lett. 83, 726–729 (1999). https://doi.org/10.1103/PhysRevLett.83.726

    Article  Google Scholar 

  25. Falconer, K.J.: The Geometry of Fractal Sets. Cambridge Tracts in Mathematics, vol. 85. Cambridge University Press, Cambridge (1985)

    Book  Google Scholar 

  26. Falconer, K.J.: The Geometry of Fractal Sets. Cambridge Tracts in Mathematics, vol. 85. Cambridge University Press, Cambridge (1986)

    MATH  Google Scholar 

  27. Fleckinger, J., Levitin, M., Vassiliev, D.: Heat equation on the triadic von Koch snowflake: asymptotic and numerical analysis. Proc. London Math. Soc. (3) 71(2), 372–396 (1995). https://doi.org/10.1112/plms/s3-71.2.372

    Article  MathSciNet  MATH  Google Scholar 

  28. de Gennes, P.G.: Physique des surfaces et des interfaces. C. R. Acad. Sc. série II(295), 1061–1064 (1982)

    Google Scholar 

  29. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics, Springer, Berlin (2001)

    Book  Google Scholar 

  30. Gyrya, P., Saloff-Coste, L.: Neumann and Dirichlet heat kernels in inner uniform domains. Astérisque (336), viii+144 (2011)

  31. Hajłasz, P., Koskela, P., Tuominen, H.: Measure density and extendability of Sobolev functions. Rev. Mat. Iberoam. 24(2), 645–669 (2008). https://doi.org/10.4171/RMI/551

    Article  MathSciNet  MATH  Google Scholar 

  32. Herron, D.A., Koskela, P.: Uniform, Sobolev extension and quasiconformal circle domains. J. Anal. Math. 57(1), 172–202 (1991). https://doi.org/10.1007/BF03041069

    Article  MathSciNet  MATH  Google Scholar 

  33. Hinz, M., Lancia, M.R., Teplyaev, A., Vernole, P.: Fractal snowflake domain diffusion with boundary and interior drifts. J. Math. Anal. Appl. 457(1), 672–693 (2018). https://doi.org/10.1016/j.jmaa.2017.07.065

    Article  MathSciNet  MATH  Google Scholar 

  34. Hinz, M., Magoulès, F., Rozanova-Pierrat, A., Rynkovskaya, M., Teplyaev, A.: On the existence of optimal shapes in architecture. Appl. Math. Model. 94, 676–687 (2021). https://doi.org/10.1016/j.apm.2021.01.041

    Article  MathSciNet  MATH  Google Scholar 

  35. Hinz, M., Meinert, M.: On the viscous Burgers equation on metric graphs and fractals. J. Fractal Geom. 7(2), 137–182 (2020). https://doi.org/10.4171/jfg/87

    Article  MathSciNet  MATH  Google Scholar 

  36. Hinz, M., Rozanova-Pierrat, A., Teplyaev, A.: Non-Lipschitz uniform domain shape optimization in linear acoustics. SIAM J. Control. Optim. 59(2), 1007–1032 (2021). https://doi.org/10.1137/20M1361687

    Article  MathSciNet  MATH  Google Scholar 

  37. Jerison, D.S., Kenig, C.E.: Boundary behavior of harmonic functions in non-tangentially accessible domains. Adv. Math. 46(1), 80–147 (1982). https://doi.org/10.1016/0001-8708(82)90055-X

    Article  MathSciNet  MATH  Google Scholar 

  38. Jones, P.W.: Quasiconformal mappings and extendability of functions in Sobolev spaces. Acta Math. 147(1–2), 71–88 (1981). https://doi.org/10.1007/BF02392869

    Article  MathSciNet  MATH  Google Scholar 

  39. Jonsson, A.: Besov spaces on closed subsets of \(\mathbb{{R}}^n\). Trans. Am. Math. Soc. 341(1), 355–370 (1994). https://doi.org/10.1090/S0002-9947-1994-1132434-6

    Article  MATH  Google Scholar 

  40. Jonsson, A.: Besov spaces on closed sets by means of atomic decomposition. Complex Variables Elliptic Equ. 54(6), 585–611 (2009). https://doi.org/10.1080/17476930802669678

    Article  MathSciNet  MATH  Google Scholar 

  41. Jonsson, A., Wallin, H.: Function spaces on subsets of \({\bf R}^n\). Math. Rep. 2(1), xiv+221 (1984)

  42. Jonsson, A., Wallin, H.: The dual of Besov spaces on fractals. Stud. Math. 112(3), 285–300 (1995)

    Article  MathSciNet  Google Scholar 

  43. Kaltenbacher, B., Lasiecka, I.: Global existence and exponential decay rates for the Westervelt equation. Discrete Contin. Dyn. Syst. Ser. S 2(3), 503–523 (2009). https://doi.org/10.3934/dcdss.2009.2.503

    Article  MathSciNet  MATH  Google Scholar 

  44. Kaltenbacher, B., Lasiecka, I.: Well-posedness of the Westervelt and the Kuznetsov equation with nonhomogeneous Neumann boundary conditions. In: 8th AIMS Conference Discrete & Continuous Dynamical Systems-Series A (Dynamical systems, differential equations and applications. Suppl. Vol. II), pp. 763–773 (2011)

  45. Kaltenbacher, B., Lasiecka, I.: An analysis of nonhomogeneous Kuznetsov’s equation: local and global well-posedness; exponential decay. Math. Nachr. 285(2–3), 295–321 (2012). https://doi.org/10.1002/mana.201000007

    Article  MathSciNet  MATH  Google Scholar 

  46. Kaltenbacher, B., Lasiecka, I., Veljović, S.: Well-posedness and exponential decay for the Westervelt equation with inhomogeneous Dirichlet boundary data. In: Parabolic problems, Progress in Nonlinear Differential Equations Appl., vol. 80, pp. 357–387. Birkhäuser, Basel (2011). https://doi.org/10.1007/978-3-0348-0075-4_19

  47. Kalton, N.J., Weis, L.: The \(H^\infty \)-calculus and sums of closed operators. Math. Ann. 321(2), 319–345 (2001). https://doi.org/10.1007/s002080100231

    Article  MathSciNet  MATH  Google Scholar 

  48. Lancia, M.R.: A Transmission Problem with a Fractal Interface. Zeitschrift für Analysis und ihre Anwendungen 21(1), 113–133 (2002). https://doi.org/10.4171/ZAA/1067

    Article  MathSciNet  MATH  Google Scholar 

  49. Lancia, M.R.: Second order transmission problems across a fractal surface. Rendiconti, Accademia Nazionale delle Scienze detta dei XL, Memoire di Mathematica e Applicazioni XXVII, 191–213 (2003)

  50. Lancia, M.R., Vernole, P.: Irregular Heat Flow Problems. SIAM J. Math. Anal. 42(4), 1539–1567 (2010). https://doi.org/10.1137/090761173

    Article  MathSciNet  MATH  Google Scholar 

  51. Lapidus, M.L., Neuberger, J.W., Renka, R.J., Griffith, C.A.: Snowflake harmonics and computer graphics: numerical computation of spectra on fractal drums. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 6(7), 1185–1210 (1996). https://doi.org/10.1142/S0218127496000680

  52. Lions, J., Magenes, E.: Non-Homogeneous Boundary Value Problems and Applications, vol. 1. Springer, Berlin (1972)

    Book  Google Scholar 

  53. Magoulès, F., Kieu Nguyen, T.P., Omnes, P., Rozanova-Pierrat, A.: Optimal absorption of acoustic waves by a boundary. SIAM J. Control. Optim. 59(1), 561–583 (2021). https://doi.org/10.1137/20M1327239

    Article  MathSciNet  MATH  Google Scholar 

  54. Mandelbrot, B.: How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science 156(3775), 636–638 (1967)

    Article  Google Scholar 

  55. Mandelbrot, B.B.: The Fractal Geometry of Nature. Henry Holt and Company, Juvenile Nonfiction (1983)

    Book  Google Scholar 

  56. Marschall, J.: The trace of Sobolev-Slobodeckij spaces on Lipschitz domains. Manuscripta Math. 58(1–2), 47–65 (1987). https://doi.org/10.1007/BF01169082

    Article  MathSciNet  MATH  Google Scholar 

  57. Meyer, S., Wilke, M.: Global well-posedness and exponential stability for Kuznetsov’s equation in \(L_p\)-spaces. Evol. Equ. Control Theory 2(2), 365–378 (2013). https://doi.org/10.3934/eect.2013.2.365

    Article  MathSciNet  MATH  Google Scholar 

  58. Mosco, U.: Convergence of convex sets and of solutions of variational inequalities. Adv. Math. 3, 510–585 (1969). https://doi.org/10.1016/0001-8708(69)90009-7

    Article  MathSciNet  MATH  Google Scholar 

  59. Mosco, U.: Harnack inequalities on scale irregular Sierpinski gaskets. In: Nonlinear problems in mathematical physics and related topics, II, Int. Math. Ser. (N. Y.), vol. 2, pp. 305–328. Kluwer/Plenum, New York (2002). https://doi.org/10.1007/978-1-4615-0701-7_17

  60. Mosco, U.: Gauged Sobolev inequalities. Appl. Anal. 86(3), 367–402 (2007). https://doi.org/10.1080/00036810701206617

    Article  MathSciNet  MATH  Google Scholar 

  61. Nyström, K.: Smoothness properties of solutions to dirichlet problems in domains with a fractal boundary. Doctoral Thesis, University of Umeä, Umeä (1994)

  62. Nyström, K.: Integrability of Green potentials in fractal domains. Ark. Mat. 34(2), 335–381 (1996). https://doi.org/10.1007/BF02559551

    Article  MathSciNet  MATH  Google Scholar 

  63. Rozanova-Pierrat, A.: Generalization of Rellich-Kondrachov theorem and trace compacteness in the framework of irregular and fractal boundaries. In: Fractals in engineering: Theoretical aspects and Numerical approximations, ICIAM 2019–SEMA SIMAI Springer Series Publications (2021)

  64. Pisier, G.: Some results on Banach spaces without local unconditional structure. Compositio Math. 37(1), 3–19 (1978)

    MathSciNet  MATH  Google Scholar 

  65. Rogers, L.G.: Degree-independent Sobolev extension on locally uniform domains. J. Funct. Anal. 235(2), 619–665 (2006). https://doi.org/10.1016/j.jfa.2005.11.013

    Article  MathSciNet  MATH  Google Scholar 

  66. Rosanova, A.V.: Letter to the editor. Math. Notes 78(5–6), 745–745 (2005). https://doi.org/10.1007/s11006-005-0179-8

    Article  MathSciNet  MATH  Google Scholar 

  67. Rozanova, A.V.: Controllability for a nonlinear abstract evolution equation. Math. Notes 76(3/4), 511–524 (2004). https://doi.org/10.1023/B:MATN.0000043481.71476.9e

    Article  MathSciNet  MATH  Google Scholar 

  68. Rozanova, A.V.: Controllability in a nonlinear parabolic problem with integral overdetermination. Differ. Equ. 40(6), 853–872 (2004). https://doi.org/10.1023/B:DIEQ.0000046863.03593.a8

    Article  MathSciNet  MATH  Google Scholar 

  69. Rozanova-Pierrat, A.: Approximation of a compressible Navier-Stokes system by non-linear acoustical models. In: Proceedings of the International Conference “Days on Diffraction 2015”, St. Petersburg, Russia. IEEE , St. Petersburg, Russia (2015). https://doi.org/10.1109/DD.2015.7354874. https://hal.archives-ouvertes.fr/hal-01257919

  70. Rozanova-Pierrat, A.: Wave Propagation and Fractal Boundary Problems: Mathematical Analysis and Applications. Université Paris-Saclay, HDR (2020)

    MATH  Google Scholar 

  71. Rozanova-Pierrat, A., Grebenkov, D.S., Sapoval, B.: Faster diffusion across an irregular boundary. Phys. Rev. Lett. 108, 1298 (2012). https://doi.org/10.1103/PhysRevLett.108.240602

    Article  Google Scholar 

  72. Sapoval, B., Gobron, T.: Vibrations of strongly irregular or fractal resonators. Phys. Rev. E 47, 3013–3024 (1993). https://doi.org/10.1103/PhysRevE.47.3013

    Article  Google Scholar 

  73. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  74. Sukhinin, M.F.: On the solvability of the nonlinear stationary transport equation. Teoret. Mat. Fiz. 103(1), 23–31 (1995). https://doi.org/10.1007/BF02069780

    Article  MathSciNet  Google Scholar 

  75. Triebel, H.: Fractals and Spectra. Related to Fourier Analysis and Function Spaces. Birkhäuser, Berlin (1997)

    MATH  Google Scholar 

  76. Wallin, H.: The trace to the boundary of Sobolev spaces on a snowflake. Manuscripta Math. 73(1), 117–125 (1991). https://doi.org/10.1007/BF02567633

    Article  MathSciNet  MATH  Google Scholar 

  77. Westervelt, P.J.: Parametric acoustic array. J. Acoust. Soc. Am. 35(4), 535–537 (1963). https://doi.org/10.1121/1.1918525

    Article  Google Scholar 

  78. Zeidler, E.: Nonlinear Functional Analysis and its Applications II/A: Linear Monotone Operators. Springer, New York (1990)

    Book  Google Scholar 

Download references

Acknowledgements

The authors are deeply grateful to Luke G. Rogers and the unanimous referee for many helpful comments. The additional thanks and warm thoughts are in memory of M. F. Sukhinin recently died.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Rozanova-Pierrat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by M. Struwe.

Appendices

Proof of Theorem 8

As in Ref. [17] let us define for every \(m\in \mathbb {N}^*\), \(t\ge 1\) the function

$$\begin{aligned} G_{t,m}(\xi ):=\left\{ \begin{array}{ll} 0 &{} \hbox {if }\xi \le 0,\\ \xi ^t &{} \hbox {if }\xi \in ]0,m[,\\ m^{t-1}u &{} \hbox {if }\xi \ge m, \end{array}\right. \end{aligned}$$
(77)

which by its definition is piece wise smooth and has a bounded derivative. This implies that \(G_{t,m}(u)\in V(\varOmega )\) for \(u\in V(\varOmega )\) by Theorem 7.8 of Ref. [29]. For some fixed \(m\ge 1\) and \(q\ge 2\) we introduce the following notations:

$$\begin{aligned} v:=G_{q-1,m}(u), \quad w:=G_{\frac{q}{2},m}(u). \end{aligned}$$

Using again Theorem 7.8 in Ref. [29] we obtain that

$$\begin{aligned} \partial _{x_i}w\partial _{x_j}w=\left\{ \begin{array}{ll} \frac{q^2}{4(q-1)}\partial _{x_i}u\partial _{x_j}v, &{}\hbox { if } u(x)\le m\\ \partial _{x_i}u\partial _{x_j}v, &{} \hbox { if }u(x)\ge m. \end{array} \right. \end{aligned}$$

Consequently we find

$$\begin{aligned} \Vert \nabla w\Vert _{L^2(\varOmega )}^2\le&\frac{q^2}{4(q-1)} (\nabla u,\nabla v)_{L^2(\varOmega )}\\ \le&q [(\nabla u,\nabla v)_{L^2(\varOmega )}+a\int _{\varGamma _R}\mathrm {Tr}_{\varGamma _R}u\;\mathrm {Tr}_{\varGamma _R}v dm_d]\\ \le&q (f,v)_{L^2(\varOmega )}\\ \le&q \Vert f\Vert _{L^2(\varOmega )} \Vert v\Vert _{L^2(\varOmega )}. \end{aligned}$$

Using estimate (16) we obtain

$$\begin{aligned} \Vert w\Vert _{L^6(\varOmega )}^2\le C \Vert \nabla w\Vert _{L^2(\varOmega )}^2 \le C q \Vert f\Vert _{L^2(\varOmega )} \Vert v\Vert _{L^2(\varOmega )}, \end{aligned}$$

where \(C>0\) depends only on \(\varOmega \) in the same way as in Proposition 2. Then we use the fact that \(0\le v\le w^{\frac{2(q-1)}{q}} \) to deduce

$$\begin{aligned} \Vert w^{\frac{2}{q}}\Vert _{L^ {3q}(\varOmega )}^q\le C q \Vert f\Vert _{L^2(\varOmega )} \Vert w^{\frac{2}{q}}\Vert _{L^{2(q-1)}(\varOmega )}^{q-1}. \end{aligned}$$
(78)

Let us denote by \(u^+\) and \(u^-\) the positive and negative parts of u, \(u^{\pm }:=\max (0,\pm u)\). The sequence of functions \(w^{\frac{2}{q}}= [G_{\frac{q}{2},m}(u)]^{\frac{2}{q}}\) is increasing as m increases and converges to \(u^+\) as m goes to infinity. Thus, if we take \(\overline{u}=\frac{u^+}{M}\) with \(M=C \Vert f\Vert _{L^2(\varOmega )}\), from (78) with the help of the monotone convergence theorem we have

$$\begin{aligned} \Vert \overline{u}\Vert _{L^ {3q}(\varOmega )}^q\le q \Vert \overline{u}\Vert _{L^{2(q-1)}(\varOmega )}^{q-1}. \end{aligned}$$
(79)

We take \(q_0=2\) and \(q_{n+1}=1+ \eta q_n\) with \(\eta =\frac{3}{2}\) for all \(n\in \mathbb {N}\), what allows us thanks to estimate (79) to find

$$\begin{aligned} \Vert \overline{u}\Vert _{L^ {3q_{n+1}}(\varOmega )}^{q_{n+1}}\le q_{n+1} \Vert \overline{u}\Vert _{L^{3q_n}(\varOmega )}^{\eta q_n}. \end{aligned}$$

From the last estimate we obtain by induction that

$$\begin{aligned} \Vert \overline{u}\Vert _{L^ {3q_{n+1}}(\varOmega )}\le \left( \prod _{k=1}^{n+1} q_k^{\frac{\eta ^{n+1-k}}{q_{n+1}}} \right) \Vert \overline{u}\Vert _{L^6(\varOmega )}^{2\frac{\eta ^{n+1}}{q_{n+1}}}. \end{aligned}$$

As \(\eta =\frac{3}{2} >1\) we see that \(\eta \le \frac{q_{n+1}}{q_n} \le 2\eta \), which by induction implies that \(q_{n+1}=4\eta ^{n+1}-2\). Consequently,

$$\begin{aligned} \Vert \overline{u}\Vert _{L^ {3q_{n+1}}(\varOmega )}\le 2^{\sum _{k=1}^{n+1}\eta ^{-k}} (2\eta )^{\frac{1}{2}\sum _{k=1}^{n+1}k\eta ^{-k}}\Vert \overline{u}\Vert _{L^6(\varOmega )}^{2\frac{\eta ^{n+1}}{4\eta ^{n+1}-2}}. \end{aligned}$$

Since \(\eta >1\) we can pass to the limit for \(n\rightarrow +\infty \):

$$\begin{aligned} \Vert \overline{u}\Vert _{L^{\infty }(\varOmega )}\le K \Vert \overline{u}\Vert _{L^6}^{\frac{1}{2}}, \end{aligned}$$

where

$$\begin{aligned} K= 2^{\sum _{k=1}^{+\infty }\eta ^{-k}} (2\eta )^{\frac{1}{2}\sum _{k=1}^{+\infty }k\eta ^{-k}}<+\infty . \end{aligned}$$

Taking into account that

$$\begin{aligned} \Vert \overline{u}\Vert _{L^{\infty }(\varOmega )}\le K \vert \varOmega \vert ^{\frac{1}{12}}\Vert \overline{u}\Vert _{L^{\infty }(\varOmega )}^{\frac{1}{2}}, \end{aligned}$$

we conclude in

$$\begin{aligned} \Vert \overline{u}\Vert _{L^{\infty }(\varOmega )}\le K^2 \vert \varOmega \vert ^{\frac{1}{6}}. \end{aligned}$$

Finally, by definition of \(\overline{u}\) we obtain

$$\begin{aligned} \Vert u^+\Vert _{L^{\infty }(\varOmega )}\le C \Vert f\Vert _{L^2(\varOmega )}, \end{aligned}$$

where \(C>0\) depends only on \(\varOmega \) in the same way as in Proposition 2. As \(u^-=(-u)^+\), and by linearity \(-u\) is the solution of the Poisson problem (3) with f replaced by \(-f\), then we also have

$$\begin{aligned} \Vert u^-\Vert _{L^{\infty }(\varOmega )}\le C \Vert f\Vert _{L^2(\varOmega )}, \end{aligned}$$

which finishes the proof.

Scale irregular Koch curves and the Strong Open Set Condition

Koch mixtures [13] can give a typical example of a self-similar fractal boundary in \(\mathbb {R}^2\).

We recall briefly some notations introduced in Section 2 page 1223 of Ref. [13] for scale irregular Koch curves built on two families of contractive similitudes. Let \(\mathcal {B}=\lbrace 1,2\rbrace \): for \(a\in \mathcal {B}\) let \(2<l_a<4\), and for each \(a\in \mathcal {B}\) let

$$\begin{aligned} \varPsi ^{(a)}=\lbrace \psi _1^{(a)},\ldots , \psi _4^{(a)}\rbrace \end{aligned}$$

be the family of contractive similitudes \(\psi _i^{(a)}:\mathbb {C}\rightarrow \mathbb {C}\), \(i=1, \ldots , 4\), with contraction factor \(l_a^{-1}\) defined in Ref. [14].

Let \(\varXi =\mathcal {B}^{\mathbb {N}}\); we call \(\xi \in \varXi \) an environnent. We define the usual left shift S on \(\varXi \). For \(\mathcal {O}\subset \mathbb {R}^2\), we set

$$\begin{aligned} \varPhi ^{(a)}(\mathcal {O})=\bigcup _{i=1}^4 \psi _i^{(a)}(\mathcal {O}) \end{aligned}$$

and

$$\begin{aligned} \varPhi ^{(\xi )}_m(\mathcal {O})=\varPhi ^{(\xi _1)}\circ \cdots \circ \varPhi ^{(\xi _m)}(\mathcal {O}). \end{aligned}$$

Let K be the line segment of unit length with \(A=(0,0)\) and \(B=(1,0)\) as end points. We set, for each m in \(\mathbb {N}\),

$$\begin{aligned} K^{(\xi ),m}=\varPhi ^{(\xi )}_m(K). \end{aligned}$$

\(K^{(\xi ),m}\) is the so-called m-th prefractal curve. The fractal \(K^{(\xi )}\) associated with the environment sequence \(\xi \) is defined by

$$\begin{aligned} K^{(\xi )}=\overline{\bigcup _{m=1}^{+\infty }\varPhi ^{(\xi )}_m(\varGamma )}, \end{aligned}$$

where \(\varGamma =\lbrace A,B\rbrace \). For \(\xi \in \varXi \), we set \(i\vert m=(i_1,\ldots ,i_m)\) and \(\psi _{i\vert m}=\psi _{i_1}^{(\xi _1)}\circ \cdots \circ \psi _{i_m}^{(\xi _m)}\). We define the volume measure \(\mu ^{(\xi )}\) as the unique Radon measure on \(K^{(\xi )}\) such that

$$\begin{aligned} \mu ^{(\xi )}(\psi _{i\vert m}(K^{(S^m\xi )}))=\frac{1}{4^m} \end{aligned}$$

(see Section 2 in Ref. [7]) as, for each \(a\in \mathcal {B}\), the family \(\varPhi ^{(a)}\) has 4 contractive similitudes.

The fractal set \(K^{(\xi )}\) and the volume measure \(\mu ^{(\xi )}\) depend on the oscillations in the environment sequence \(\xi \). We denote by \(h_a^{(\xi )}(m)\) the frequency of the occurrence of a in the finite sequence \(\xi \vert m\), \(m\ge 1\):

$$\begin{aligned} h_a^{(\xi )}(m)=\frac{1}{m}\sum _{i=1}^m 1_{\lbrace \xi _i=a\rbrace }, \hbox { }a=1,2. \end{aligned}$$

Let \(p_a\) be a probability distribution on \(\mathcal {B}\), and suppose that \(\xi \) satisfies

$$\begin{aligned} h_a^{(\xi )}(m)\underset{m\rightarrow +\infty }{\longrightarrow } p_a , \end{aligned}$$

(where \(0\le p_a\le 1,\) \(p_1+p_2=1\)) and

$$\begin{aligned} \vert h_a^{(\xi )}(m)-p_a\vert \le \frac{C_0}{m}, \hbox { }a=1,2,\hbox { }(n\ge 1), \end{aligned}$$

with some constant \(C_0\ge 1\), that is, we consider the case of the fastest convergence of the occurrence factors.

Under these conditions, the measure \(\mu ^{(\xi )}\) has the property that there exist two positive constants \(C_1\), \(C_2\), such that (see Refs. [59, 60]),

$$\begin{aligned} C_1 r^{d^{(\xi )}}\le \mu ^{(\xi )}(K^{(\xi )}\cap B_r(x))\le C_2 r^{d^{(\xi )}} \;\;\;\hbox {for all } x\in K^{(\xi )},0<r\le 1, \end{aligned}$$

where \(B_r(x)\subset \mathbb {R}^2\) denotes the Euclidean ball of radius r and centered at x with

$$\begin{aligned} d^{(\xi )}=\frac{\ln 4}{p_1 \ln p_1+p_2 \ln p_2} . \end{aligned}$$

According to Definition 3, it means that \(K^{(\xi )}\) is a \( d^{(\xi )}\)-set and the measure \(\mu ^{(\xi )} \) is a \(d^{(\xi )}-\) dimensional measure equivalent to the \(d^{(\xi )}\)-dimensional Hausdorff measure \(m_{d^{(\xi )}}\).

Fig. 2
figure 2

An illustration for the Open Set Condition in the case of the square Koch curve, also called the Minkowski fractal. The thick dotted line outlines the set \(\mathcal {O}\), which is called the 0-cell. The thin dotted lines outlines the open sets in \(\varPhi _1(\mathcal {O})\), which are called 1-cells. The bottom picture illustrates the stronger form of the Open Set Condition used in Conjecture 1: the thin solid lines outline the open sets \( \mathcal {O}'\) and \(\varPhi _1(\mathcal {O}')\)

We now discuss the more general set-up in Sect. 6.1. The standard Open Set Condition [26, Section 9.2] is satisfied for an iterated function system if there is a non-empty bounded open set O such that \(\varPhi _m(O)\subset O\) with the union in the left-hand side disjoint. Note that the open set O may not be unique. Conjecture 1 assumes The Fractal Self-Similar Face Condition (Assumption 1) and a strong version of the Open Set Condition, see Fig. 2, that we introduce as follows.

Assumption 3

(A Strong Open Set Condition) We assume the Open Set Condition for the sequence \(\varPhi _m\) is satisfied with two different convex open polygons \(\mathcal {O}\subsetneqq \mathcal {O}'\), not depending on m, such that

$$\begin{aligned} \partial {\mathcal {O}}\cap K_0=\partial {\mathcal {O}}'\cap K_0=\partial {\mathcal {O}}\cap \partial {\mathcal {O}}'=\partial _{(n-2)}K_0. \end{aligned}$$

Conjecture 1

: If Assumptions 1 and 3 are satisfied, then \(\varOmega _m\) and \(\varOmega \) are uniformly exterior and interior \((\epsilon ,\infty )\)-domains, that is, \(\epsilon \) does not depend on m.

One possible approach to this conjecture, following Definition 2 of an \((\varepsilon ,\delta )\)-domain from [38] and [36, Remark 1], condition (ii) is equivalent to saying that the \(\frac{1}{\varepsilon }\)-cigar

$$\begin{aligned} C(\gamma ,\varepsilon ):=\bigcup _{z\in \gamma } B(z,\varepsilon \lambda (z)),\quad \text {where}\quad \lambda (z)=|x-z|\frac{|y-z|}{|x-y|},\quad z\in \gamma , \end{aligned}$$
(80)

is contained in \(\varOmega \). Another possible approach to this conjecture is by the recent result [5, Theorem 2.15] (see also [5, Appendix A]), it is enough to prove the interior and exterior NTA conditions with uniform constants (we do not provide here the definition of an NTA domain, see [37] or [5]).

By [5, Defintion 2.12], we need to verify the Corkscrew condition [5, Defintion 2.10] and the Harnack chain condition [5, Defintion 2.12] with constants not depending on m. The Corkscrew condition, both exterior and interior, is immediately implied by the self-similarity and the Strong Open Set Condition. The essential arguments in the proof of the Harnack chain condition are similar to those in Ref. [2], where the reader can find background and detailed explanations of the techniques.

In the two dimensional case there are more straightforward arguments to show that polygonal approximations to a self-similar curve bound uniformly \((\varepsilon ,\infty )\)-domains. Such arguments can be based on the Ahlfors three point condition, see [38, page 73].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dekkers, A., Rozanova-Pierrat, A. & Teplyaev, A. Mixed boundary valued problems for linear and nonlinear wave equations in domains with fractal boundaries. Calc. Var. 61, 75 (2022). https://doi.org/10.1007/s00526-021-02159-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-021-02159-3

Mathematics Subject Classification

Navigation