Skip to main content
Log in

Uniform, Sobolev extension and quasiconformal circle domains

  • Published:
Journal d’Analyse Mathématique Aims and scope

Abstract

This paper contributes to the theory of uniform domains and Sobolev extension domains. We present new features of these domains and exhibit numerous relations among them. We examine two types of Sobolev extension domains, demonstrate their equivalence for bounded domains and generalize known sufficient geometric conditions for them. We observe that in the plane essentially all of these domains possess the trait that there is a quasiconformal self-homeomorphism of the extended plane which maps a given domain conformally onto a circle domain. We establish a geometric condition enjoyed by these plane domains which characterizes them among all quasicircle domains having no large and no small boundary components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Adams,Sobolev Spaces, Pure and Applied Math., 65, Academic Press, New York, 1975.

    MATH  Google Scholar 

  2. K. Astala and J. Heinonen.On quasiconformal rigidity in space and plane, Ann. Acad. Sci. Fenn. Ser. A I Math.13 (1988), 81–92.

    MATH  MathSciNet  Google Scholar 

  3. A. Beurling and L. V. Ahlfors,The boundary correspondence under quasiconformal mappings, Acta Math.96 (1956), 125–142.

    Article  MATH  MathSciNet  Google Scholar 

  4. F. W. Gehring,Uniform domains and the ubiquitous quasidisk, Jahresber. Deutsch. Math.-Verein.89 (1987), 88–103.

    MATH  MathSciNet  Google Scholar 

  5. F. W. Gehring and O. Martio,Lipschitz classes and quasiconformal mappings, Ann. Acad. Sci. Fenn. Ser. A I Math.10 (1985), 203–219.

    MATH  MathSciNet  Google Scholar 

  6. F. W. Gehring and O. Martio,Quasiextremal distance domains and extension of quasiconformal mappings, J. Analyse Math.45 (1985), 181–206.

    Article  MATH  MathSciNet  Google Scholar 

  7. D. Gilbarg and N. S. Trudinger,Elliptic Partial Differential Equations of Second Order, 2nd ed., Springer-Verlag, Berlin, 1983.

    MATH  Google Scholar 

  8. G. M. Goluzin,Geometric Theory of Functions of a Complex Variable, Translations of Mathematical Monographs, Vol. 26, Am. Math. Soc., Providence, R.I., 1969.

    MATH  Google Scholar 

  9. V. M. Gol’dshtein and Yu. G. Reshetnyak,Quasiconformal Mappings and Sobolev Spaces, Kluwer, Dordrecht, 1990.

    MATH  Google Scholar 

  10. D. A. Herron,The geometry of uniform, quasicircle, and circle domains, Ann. Acad. Sci. Fenn. Ser. A I Math.12 (1987), 217–228.

    MATH  MathSciNet  Google Scholar 

  11. D. A. Herron,Uniform domains: sufficient conditions, inBounded Mean Oscillation in Complex Analysis, Univ. Joensuu Publ. Sciences, 1989, pp. 56–69.

  12. D. A. Herron and P. Koskela,Quasiextremal distance domains and conformal mappings onto circle domains, Complex Variables15 (1990), 167–179.

    MATH  MathSciNet  Google Scholar 

  13. R. Hurri,Poincare domains in ℝ n, Ann. Acad. Sci. Fenn. Ser. A I Math. Diss.71 (1988), 1–42.

    MathSciNet  Google Scholar 

  14. P. W. Jones,Quasiconformal mappings and extendability of functions in Sobolev spaces, Acta Math.147 (1981), 71–88.

    Article  MATH  MathSciNet  Google Scholar 

  15. T. Kolsrud,Condenser capacities and removable sets in W 1, p Ann. Acad. Sci. Fenn. Ser. A I Math.8 (1983), 343–348.

    MATH  MathSciNet  Google Scholar 

  16. P. Koskela,Capacity extension domains, Ann. Acad. Sci. Fenn. Ser. A I Math. Diss.73 (1990), 1–42.

    MathSciNet  Google Scholar 

  17. O. Martio,John domains, bilipschitz balls and Poincaré inequality, Rev. Romaine Math. Pure Appl.33 (1988), 107–112.

    MATH  MathSciNet  Google Scholar 

  18. O. Martio and J. Sarvas,Injectivity theorems in plane and space, Ann. Acad. Sci. Fenn. Ser. A I Math.4 (1978/79), 383–401.

    MathSciNet  Google Scholar 

  19. V. G. Maz’ja,Sobolev Spaces, Springer-Verlag, Berlin, 1985.

    MATH  Google Scholar 

  20. R. J. Sibner,‘Uniformizations’ of infinitely connected domains, inAdvances in the Theory of Riemann Surfaces, Proc. 1969 Stony Brook Conf., Annals Math. Studies, No. 66, Princeton Univ. Press and Univ. Tokyo Press, Princeton, N.J., 1971, pp. 407–420.

    Google Scholar 

  21. W. Smith and D. A. Stegenga,Hölder domains and Poincaré domains, Trans. Am. Math. Soc.319 (1990), 67–100.

    Article  MATH  MathSciNet  Google Scholar 

  22. M. Tsuji,Potential Theory in Modern Function Theory, Maruzen, Tokyo, 1959.

    MATH  Google Scholar 

  23. J. Väisälä,Remarks on a paper of Tienari concerning quasiconformal continuation, Ann. Acad. Sci. Fenn. Ser. A I Math.324 (1962), 1–6.

    Google Scholar 

  24. J. Väisälä,Lectures On n-Dimensional Quasiconformal Mappings, Lecture Notes in Math., No. 229, Springer-Verlag, Berlin, 1971.

    MATH  Google Scholar 

  25. J. Väisälä,Uniform domains, Tôhoku Math. J.40 (1988), 101–118.

    Article  MATH  Google Scholar 

  26. R. L. Wilder,Topology of Manifolds, Am. Math. Soc. Colloq. Publ., Vol. 32, New York, 1949.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Partially supported by the University of Cincinnati’s Taft Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herron, D.A., Koskela, P. Uniform, Sobolev extension and quasiconformal circle domains. J. Anal. Math. 57, 172–202 (1991). https://doi.org/10.1007/BF03041069

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03041069

Keywords

Navigation