Skip to main content
Log in

Integrability of Green potentials in fractal domains

  • Published:
Arkiv för Matematik

Abstract

We proveL q-inequalities for the gradient of the Green potential (Gf) in bounded, connected NTA-domains inR n,n≥2. These domains may have a highly non-rectifiable boundary and in the plane the set of all bounded simply connected NTA-domains coincides with the set of all quasidiscs. We get a restriction on the exponentq for which our inequalities are valid in terms of the validity of a reverse Hölder inequality for the Green function close to the boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, D. R. andHedberg, L. I.,Function Spaces and Potential Theory, Springer-Verlag, Berlin-Heidelberg, 1996.

    Google Scholar 

  2. Ahlfors, L., Quasiconformal reflection.Acta Math. 109 (1963), 291–301.

    Article  MathSciNet  MATH  Google Scholar 

  3. Burkholder, D. L. andGundy, R., Distribution function inequalities for the area integral,Studia Math. 44 (1972), 527–544.

    MathSciNet  MATH  Google Scholar 

  4. Coifman, R. R. andFefferman, C., Weighted norm inequalities for maximal functions and singular integrals,Studia Math. 51 (1974), 241–250.

    MathSciNet  MATH  Google Scholar 

  5. Dahlberg, B. E. J., Estimates of harmonic measures,Arch. Rational Mech. Anal. 65 (1977), 149–179.

    Article  MathSciNet  Google Scholar 

  6. Dahlberg, B. E. J.,L q-estimates for Green potentials in Lipschitz domains,Math. Scand. 44 (1979), 149–170.

    MathSciNet  MATH  Google Scholar 

  7. Dahlberg, B. E. J., On the Poisson integral for Lipschitz andC 1-domains,Studia Math. 66 (1979), 13–24.

    MathSciNet  MATH  Google Scholar 

  8. Dahlberg, B. E. J., Weighted norm inequalities for the Lusin area integral and the non-tangential maximal function for harmonic functions in a Lipschitz domain,Studia Math. 67 (1980), 297–314.

    MathSciNet  MATH  Google Scholar 

  9. Gehring, F. W.,Characteristic Properties of Quasidisks, Sém. Math. Sup.84, Univ. Montréal, Montréal, Que., 1982.

    MATH  Google Scholar 

  10. Gehring, F. W. andVäisälä, J., Hausdorff dimension and quasiconformal mappings,J. London Math. Soc. (2)6 (1973), 504–512.

    MathSciNet  MATH  Google Scholar 

  11. de Guzman, M.,Real Variable Methods in Fourier Analysis, Notas Mat.75, North-Holland Math. Studies46, North-Holland, Amsterdam-New York, 1981.

    MATH  Google Scholar 

  12. Hedberg, L. I., Spectral synthesis in Sobolev spaces and uniqueness of solutions of the Dirichlet problem,Acta Math. 147 (1981), 237–264.

    Article  MathSciNet  MATH  Google Scholar 

  13. Helms, L. L.,Introduction to Potential Theory, John Wiley & Sons, New York, 1969.

    MATH  Google Scholar 

  14. Jerison, D. S. andKenig, C. E., Boundary behaviour of harmonic functions in non-tangentially accessible domains.Adv. in Math. 46 (1982), 80–147.

    Article  MathSciNet  MATH  Google Scholar 

  15. Jones, P. W., Extension theorems for BMO,Indiana J. Math. 29 (1980), 41–66.

    Article  MATH  Google Scholar 

  16. Jones, P. W., Quasiconformal mappings and extendability of functions in Sobolev spaces,Acta Math. 47 (1981), 71–88.

    Article  Google Scholar 

  17. Jones, P. W., A geometric localization theorem,Adv. in Math. 46 (1982), 71–79.

    Article  MathSciNet  MATH  Google Scholar 

  18. Maz'ya, V. G.,Sobolev Spaces, Springer-Verlag, Berlin-Heidelberg, 1985.

    Google Scholar 

  19. Maz'ya, V. G. andHavin, V. P., Non-linear potential theory,Uspekhi Mat. Nauk 27:6 (1972), 67–138 (Russian). English transl.:Russian Math. Surveys 27:6 (1972), 71–148.

    MATH  Google Scholar 

  20. Muckenhoupt, B. andWheeden, R. L., Weighted norm inequalities for fractional integrals,Trans. Amer. Math. Soc. 192 (1974), 261–274.

    Article  MathSciNet  MATH  Google Scholar 

  21. Nyström, K.,Smoothness Properties of Dirichlet Problems in Domains with a Fractal Boundary, Ph. D. Dissertation, Umeå, 1994.

  22. Stein, E. M.,Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, 1970.

    MATH  Google Scholar 

  23. Väisälä, J.,Lectures on n-Dimensional Quasiconformal Mappings, Lecture Notes in Math.229, Springer-Verlag, Berlin-Heidelberg, 1971.

    MATH  Google Scholar 

  24. Widman, K.-O., Inequalities for the Green function and boundary continuity of the gradient of solutions of elliptic differential equations,Math. Scand. 21 (1967), 17–37.

    MathSciNet  MATH  Google Scholar 

  25. Wu, J. M., Content and harmonic measure; An extension of Hall's lemma,Indiana Univ. Math. J. (2)36 (1987), 403–420.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nyström, K. Integrability of Green potentials in fractal domains. Ark. Mat. 34, 335–381 (1996). https://doi.org/10.1007/BF02559551

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02559551

Keywords

Navigation