Skip to main content
Log in

Groundstates and infinitely many high energy solutions to a class of nonlinear Schrödinger–Poisson systems

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We study a nonlinear Schrödinger–Poisson system which reduces to the nonlinear and nonlocal PDE

$$\begin{aligned} - \Delta u+ u + \lambda ^2 \left( \frac{1}{\omega |x|^{N-2}}\star \rho u^2\right) \rho (x) u = |u|^{q-1} u \quad x \in {{\mathbb {R}}}^N, \end{aligned}$$

where \(\omega = (N-2)|{\mathbb {S}}^{N-1} |,\) \(\lambda >0,\) \(q\in (1,2^{*} -1),\) \(\rho :{{\mathbb {R}}}^N \rightarrow {{\mathbb {R}}}\) is nonnegative, locally bounded, and possibly non-radial, \(N=3,4,5\) and \(2^*=2N/(N-2)\) is the critical Sobolev exponent. In our setting \(\rho \) is allowed as particular scenarios, to either (1) vanish on a region and be finite at infinity, or (2) be large at infinity. We find least energy solutions in both cases, studying the vanishing case by means of a priori integral bounds on the Palais–Smale sequences and highlighting the role of certain positive universal constants for these bounds to hold. Within the Ljusternik–Schnirelman theory we show the existence of infinitely many distinct pairs of high energy solutions, having a min–max characterisation given by means of the Krasnoselskii genus. Our results cover a range of cases where major loss of compactness phenomena may occur, due to the possible unboundedness of the Palais–Smale sequences, and to the action of the group of translations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availibility Statement

On behalf of all authors, the corresponding author states that there are no data associated to our manuscripts.

Notes

  1. In fact this bound holds in dimensions \(N= 3,4,5\) and every \(q\in (2,2^*-1].\)

References

  1. Ambrosetti, A.: On Schrödinger-Poisson systems. Milan J. Math. 76, 257–274 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambrosetti, A., Malchiodi, A.: Perturbation methods and semilinear elliptic problems on \({\mathbb{R}}^n\). In: Progress in Mathematics, 240. Birkhäuser Verlag, Basel (2006)

  3. Ambrosetti, A., Malchiodi, A.: Nonlinear analysis and semilinear elliptic problems. Cambridge University Press (2007)

  4. Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical point theory and its applications. J. Funct. Anal. 14, 349–381 (1973)

    Article  MATH  Google Scholar 

  5. Ambrosetti, A., Ruiz, D.: Multiple bound states for the Schrödinger-Poisson problem. Commun. Contemp. Math 10, 391–404 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bartsch, T., Wang, Z.-Q.: Existence and multiplicity results for some superlinear elliptic problems on \({\mathbb{R}}^N\). Commun. Partial Differ. Equ. 20(9 & 10), 1725–1741 (1995)

    Article  MATH  Google Scholar 

  7. Bellazzini, J., Frank, R., Visciglia, N.: Maximizers for Gagliardo-Nirenberg inequalities and related non-local problems. Mat. Ann. 360(3–4), 653–673 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bellazzini, J., Ghimenti, M., Mercuri, C., Moroz, V., Van Schaftingen, J.: Sharp Gagliardo-Nirenberg inequalities in fractional Coulomb-Sobolev spaces. Trans. AMS 370(11), 8285–8310 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bao, W., Mauser, N.J., Stimming, H.P.: Effective one particle quantum dynamics of electrons: a numerical study of the Schrödinger-Poisson-\(X\alpha \) model. Commun. Math. Sci 1(4), 809–828 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Benci, V., Cerami, G.: Positive solutions of some nonlinear elliptic problems in exterior domains. Arch. Rat. Mech. Anal. 99, 283–300 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  11. Benci, V., Fortunato, D.: Variational methods in nonlinear field equations. Solitary waves, hylomorphic solitons and vortices. Springer Monographs in Mathematics. Springer, Cham (2014)

  12. Benedek, A., Panzone, R.: The space \(L^p\) with mixed norm. Duke Math. J. 28, 301–324 (1961)

    MathSciNet  MATH  Google Scholar 

  13. Berestycki, H., Lions, P.L.: Nonlinear scalar field equations, I and II. Arch. Rational Mech. Anal. 82, 313–375 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  14. Boas Jr., R.P.: Some uniformly convex spaces. Bull. Am. Math. Soc. 46, 304–311 (1940)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bokanowski, O., López, J.L., Soler, J.: On an exchange interaction model for quantum transport: the Schrödinger-Poisson-Slater system. Math. Models Methods Appl. Sci. 13(10), 1397–1412 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bonheure, D., Di Cosmo, J., Mercuri, C.: Concentration on circles for nonlinear Schrödinger-Poisson systems with unbounded potentials vanishing at infinity. Commun. Contemp. Math. 14(2) (2012)

  17. Bonheure, D., Mercuri, C.: Embedding theorems and existence results for nonlinear Schrödinger-Poisson systems with unbounded and vanishing potentials. J. Differ. Equ. 251, 1056–1085 (2011)

    Article  MATH  Google Scholar 

  18. Brezis, H., Lieb, E.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88(3), 486–490 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  19. Brezis, H.: Functional analysis. In: Sobolev Spaces and Partial Differential Equations. Springer (2011)

  20. Catto, I., Dolbeault, J., Sanchez, O., Soler, J.: Existence of steady states for the Maxwell-Schrödinger-Poisson system: exploring the applicability of the concentration-compactness principle. Math. Models Methods Appl. Sci. 23(10), 1915–1938 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Cerami, G., Molle, R.: Positive bound state solutions for some Schrödinger-Poisson systems. Nonlinearity 29, 3103–3119 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Cerami, G., Molle, R.: Multiple positive bound states for critical Schrödinger–Poisson systems. ESAIM Control Optim. Calc. Var. 25 pp. 73, 29 pp (2019)

  23. Cerami, G., Vaira, G.: Positive solutions for some non-autonomous Schrödinger-Poisson systems. J. Differ. Equ. 248, 521–543 (2010)

    Article  MATH  Google Scholar 

  24. Costa, D.G.: An Invitation to Variational Methods in Differential Equations. Birkhäuser, Boston (2007)

    Book  MATH  Google Scholar 

  25. D’Aprile, T., Mugnai, D.: Non-existence results for the coupled Klein-Gordon-Maxwell equations. Adv. Nonlinear Stud. 4(3), 307–322 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Floer, A., Weinstein, A.: Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential. J. Funct. Anal. 69(3), 397–408 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gel’fand, M., Shilov, G.E.: Properties and Operations. In: Generalized Functions, vol. I. Academic Press, New York and London (1964)

  28. Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer, New York (1983)

    MATH  Google Scholar 

  29. Hájek, P., Santalucía, V.M., Vanderwerff, J., Zizler, V.: Biorthogonal Systems in Banach Spaces. Springer, New York (2008)

    MATH  Google Scholar 

  30. Jeanjean, L.: On the existence of bounded Palais-Smale sequences and applications to a Landesman-Lazer type problem set on \({\mathbb{R}}^N\). Proc. Roy. Soc. Edinb. 129, 787–809 (1999)

    Article  MATH  Google Scholar 

  31. Jeanjean, L., Tanaka, K.: A positive solution for a nonlinear Schrödinger equation on \({\mathbb{R}}^N\). Indiana Univ. Math. J. 54(2), 443–464 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kwong, M.: Uniqueness of positive solutions of \(\Delta u-u+u^p=0\) in \({\mathbb{R}}^n\). Arch. Rat. Mech. Anal. 105, 243–266 (1989)

    Article  MATH  Google Scholar 

  33. Lieb, E.H., Loss, M.: Analysis, 2nd edn. American Mathematical Society, Rhode Island (2001)

    MATH  Google Scholar 

  34. Lions, P.L.: Some remarks on Hartree equation. Nonlinear Anal. 5(11), 1245–1256 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lions, P.L.: The concentration-compactness principle in the calculus of variations. The locally compact case. Ann. Inst. H. Poincairé Anal. Non Linéaire 1, pp. 109–145 and 223–283 (1984)

  36. Lions, P.L.: Solutions of Hartree-Fock equations for Coulomb systems. Commun. Math. Phys. 109(1), 33–97 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  37. Mauser, N.J.: The Schrödinger-Poisson-\(X\alpha \) equation. Appl. Math. Lett. 14(6), 759–763 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  38. Mercuri, C.: Positive solutions of nonlinear Schrödinger-Poisson systems with radial potentials vanishing at infinity. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 19(3), 211–227 (2008)

  39. Mercuri, C., Moroz, V., Van Schaftingen, J.: Groundstates and radial solutions to nonlinear Schrödinger-Poisson-Slater equations at the critical frequency. Calc. Var. Partial Differ. Equ. 55(6), 1–58 (2016)

    Article  MATH  Google Scholar 

  40. Mercuri, C., Tyler, T.M.: On a class of nonlinear Schrödinger-Poisson systems involving a nonradial charge density. Rev. Mat. Iberoam. 36(4), 1021–1070 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  41. Mercuri, C., Willem, M.: A global compactness result for the p-Laplacian involving critical nonlinearities. Discrete Contin. Dyn. Syst. 28(2), 469–493 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  42. Montenegro, M.: Strong maximum principles for supersolutions of quasilinear elliptic equations. Nonlinear Anal. 37(4), 431–448 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  43. Opick, L., Kufner, A., John, O., Fučík, S.: Function Spaces, vol. 1, 2nd edn. De Gruyter, Berlin/Boston (2012)

  44. Rabinowitz, P.: On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43(2), 229–266 (1992)

    Article  Google Scholar 

  45. Ruiz, D.: The Schrödinger-Poisson equation under the effect of a nonlinear local term. J. Funct. Anal. 237, 655–674 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  46. Ruiz, D.: On the Schrödinger-Poisson-Slater system: behavior of minimizers, radial and nonradial cases. Arch. Rat. Mech. Anal. 198, 349–368 (2010)

    Article  MATH  Google Scholar 

  47. Slater, J.: A simplification of the Hartree-Fock Method. Phys. Rev. 81, 385–390 (1951)

    Article  MATH  Google Scholar 

  48. Strauss, W.: Existence of solitary waves in higher dimensions. Commun. Math. Phys. 55(2), 149–162 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  49. Struwe, M.: On the evolution of harmonic mappings of Riemannian surfaces. Comment. Math. Helvetici 60, 558–581 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  50. Struwe, M.: Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, 4th edn. Springer, Berlin (2008)

    MATH  Google Scholar 

  51. Sun, J., Wu, T., Feng, Z.: Non-autonomous Schrödinger-Poisson System in \({\mathbb{R}}^3\). Discrete Contin. Dyn. Syst. 38(4), 1889–1933 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  52. Szulkin, A.: Ljusternik-Schnirelmann theory on \(C^1\)-manifolds. Ann. Inst. Henri Poincaré 5(2), 119–139 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  53. Willem, M.: Minimax Theorems. Birkhäuser, Boston (1996)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for the valuable and constructive comments, and thank them in particular for suggesting a simple proof of Lemma 2.6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Mercuri.

Ethics declarations

Conflicts of interest/Competing interests

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Communicated by Y. Giga.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Proof of the Pohozaev-type condition

Appendix A: Proof of the Pohozaev-type condition

Proof of Lemma 2.4

With the regularity remarks of Proposition 1 in place, we now multiply the first equation in (2.3) by \((x, \nabla u)\) and integrate on \(B_R(0)\) for some \(R>0\). We will compute each integral separately. We first note that

$$\begin{aligned} \begin{aligned} \int _{B_R}-\Delta u (x, \nabla u) \,\mathrm {d}x&= \frac{2-N}{2}\int _{B_R}|\nabla u|^2 \,\mathrm {d}x \\&\quad -\frac{1}{R}\int _{\partial B_R} |(x,\nabla u)|^2 \,\mathrm {d}\sigma +\frac{R}{2}\int _{\partial B_R}|\nabla u|^2 \,\mathrm {d}\sigma . \end{aligned} \end{aligned}$$
(5.20)

Fixing \(i =1,\dots , N\), integrating by parts and using the divergence theorem, we then see that,

$$\begin{aligned} \int _{B_R} bu(x_i \partial _i u)\,\mathrm {d}x&=b\left[ -\frac{1}{2} \int _{B_R} u^2\,\mathrm {d}x +\frac{1}{2}\int _{B_R}\partial _i(u^2x_i)\,\mathrm {d}x \right] \\&=b\left[ -\frac{1}{2} \int _{B_R} u^2\,\mathrm {d}x + \frac{1}{2}\int _{\partial B_R} u^2 \frac{x_i^2}{|x|}\,\mathrm {d}\sigma \right] . \end{aligned}$$

So, summing over i, we get

$$\begin{aligned} \int _{B_R} bu(x, \nabla u) \,\mathrm {d}x= b\left[ -\frac{N}{2}\int _{B_R}u^2\,\mathrm {d}x +\frac{R}{2}\int _{\partial B_R}u^2 \,\mathrm {d}\sigma \right] . \end{aligned}$$
(5.21)

Again, fixing \(i =1,\dots , N\), integrating by parts and using the divergence theorem, we find that,

$$\begin{aligned} \int _{B_R}c\rho \phi _u u x_i (\partial _i u) \,\mathrm {d}x&= c\bigg [ -\frac{1}{2}\int _{B_R} \rho \phi _u u^2 \,\mathrm {d}x -\frac{1}{2}\int _{B_R} \phi _u u^2x_i (\partial _i\rho ) \,\mathrm {d}x \\&\quad -\frac{1}{2}\int _{B_R} \rho u^2 x_i (\partial _i \phi _u) \,\mathrm {d}x+\frac{1}{2}\int _{B_R}\partial _i (\rho \phi _u u^2 x_i)\,\mathrm {d}x \bigg ] \\&=c\bigg [ -\frac{1}{2}\int _{B_R}\rho \phi _u u^2 \,\mathrm {d}x -\frac{1}{2}\int _{B_R} \phi _u u^2x_i (\partial _i\rho ) \,\mathrm {d}x \\&\quad -\frac{1}{2}\int _{B_R} \rho u^2 x_i (\partial _i \phi _u) \,\mathrm {d}x+\frac{1}{2}\int _{\partial B_R}\rho \phi _u u^2 \frac{x_i^2}{|x|}\,\mathrm {d}\sigma \bigg ]. \end{aligned}$$

Thus, summing over i, we get

$$\begin{aligned} \int _{B_R}c\rho \phi _u u (x, \nabla u) \,\mathrm {d}x&= c\bigg [ -\frac{N}{2}\int _{B_R}\rho \phi _u u^2 \,\mathrm {d}x -\frac{1}{2}\int _{B_R} \phi _u u^2 (x, \nabla \rho ) \,\mathrm {d}x \nonumber \\&\quad -\frac{1}{2}\int _{B_R} \rho u^2 (x, \nabla \phi _u) \,\mathrm {d}x+\frac{R}{2}\int _{\partial B_R} \rho \phi _u u^2 \,\mathrm {d}\sigma \bigg ]. \end{aligned}$$
(5.22)

Finally, once more fixing \(i=1,\dots , N\), integrating by parts and using the divergence theorem, we find that,

$$\begin{aligned} \int _{B_R}d |u|^{q-1}u (x_i \partial _i u) \,\mathrm {d}x = d \left[ \frac{-1}{q+1} \int _{B_R} |u|^{q+1} \,\mathrm {d}x+ \frac{1}{q+1} \int _{\partial B_R} |u|^{q+1} \frac{x_i^2}{|x|} \,\mathrm {d}\sigma \right] , \end{aligned}$$

and so, summing over i, we see that

$$\begin{aligned} \begin{aligned} \int _{B_R}d|u|^{q-1}u (x, \nabla u) \,\mathrm {d}x&=d\bigg [\frac{-N}{q+1}\int _{B_R}|u|^{q+1}\,\mathrm {d}x\\&\quad +\frac{R}{q+1}\int _{\partial B_R}|u|^{q+1}\,\mathrm {d}\sigma \bigg ]. \end{aligned} \end{aligned}$$
(5.23)

Putting (5.20), (5.21), (5.22) and (5.23) together, we see that

$$\begin{aligned} \begin{aligned}&\frac{2-N}{2}\int _{B_R}|\nabla u|^2 \,\mathrm {d}x -\frac{1}{R}\int _{\partial B_R} |(x,\nabla u)|^2 \,\mathrm {d}\sigma +\frac{R}{2}\int _{\partial B_R}|\nabla u|^2 \,\mathrm {d}\sigma \\&\quad +b\bigg [-\frac{N}{2}\int _{B_R}u^2\,\mathrm {d}x +\frac{R}{2}\int _{\partial B_R}u^2 \,\mathrm {d}\sigma \bigg ] \\&\quad + c\bigg [ -\frac{N}{2}\int _{B_R}\rho \phi _u u^2 \,\mathrm {d}x-\frac{1}{2}\int _{B_R} \phi _u u^2 (x, \nabla \rho ) \,\mathrm {d}x\\&\quad -\frac{1}{2}\int _{B_R} \rho u^2 (x, \nabla \phi _u) \,\mathrm {d}x +\frac{R}{2}\int _{\partial B_R} \rho \phi _u u^2 \,\mathrm {d}\sigma \bigg ]\\&\quad -d\left[ \frac{-N}{q+1}\int _{B_R}|u|^{q+1}\,\mathrm {d}x+\frac{R}{q+1}\int _{\partial B_R}|u|^{q+1}\,\mathrm {d}\sigma \right] =0. \end{aligned} \end{aligned}$$
(5.24)

We now multiply the second equation in (2.3) by \((x, \nabla \phi _u)\) and integrate on \(B_R(0)\) for some \(R>0\). By a simple calculation we see that

$$\begin{aligned} \begin{aligned} \int _{B_R} \rho u^2 (x, \nabla \phi _u)\,\mathrm {d}x&= \int _{B_R} -\Delta \phi _u (x, \nabla \phi _u) \,\mathrm {d}x \\&= \frac{2-N}{2}\int _{B_R}|\nabla \phi _u|^2 \,\mathrm {d}x -\frac{1}{R}\int _{\partial B_R} |(x,\nabla \phi _u)|^2 \,\mathrm {d}\sigma \\&\quad +\frac{R}{2}\int _{\partial B_R}|\nabla \phi _u|^2 \,\mathrm {d}\sigma . \end{aligned} \end{aligned}$$

Substituting this into (5.24) and rearranging, we get

$$\begin{aligned} \begin{aligned}&\frac{N-2}{2}\int _{B_R}|\nabla u|^2 \,\mathrm {d}x +\frac{Nb}{2}\int _{B_R}u^2\,\mathrm {d}x +\frac{(N+k)c}{2}\int _{B_R}\rho \phi _u u^2 \,\mathrm {d}x \\&\qquad +\frac{c(2-N)}{4}\int _{B_R}|\nabla \phi _u|^2\,\mathrm {d}x -\frac{Nd}{q+1}\int _{B_R}|u|^{q+1}\,\mathrm {d}x \\&\quad \le \frac{N-2}{2}\int _{B_R}|\nabla u|^2 \,\mathrm {d}x +\frac{Nb}{2}\int _{B_R}u^2\,\mathrm {d}x +\frac{Nc}{2}\int _{B_R}\rho \phi _u u^2 \,\mathrm {d}x \\&\qquad +\frac{c}{2}\int _{B_R} \phi _u u^2 (x, \nabla \rho ) \,\mathrm {d}x +\frac{c(2-N)}{4}\int _{B_R}|\nabla \phi _u|^2\,\mathrm {d}x-\frac{Nd}{q+1}\int _{B_R}|u|^{q+1}\,\mathrm {d}x \\&\quad =-\frac{1}{R}\int _{\partial B_R} |(x,\nabla u)|^2 \,\mathrm {d}\sigma +\frac{R}{2}\int _{\partial B_R}|\nabla u|^2 \,\mathrm {d}\sigma +\frac{bR}{2}\int _{\partial B_R}u^2 \,\mathrm {d}\sigma \\&\qquad +\frac{cR}{2}\int _{\partial B_R} \rho \phi _u u^2 \,\mathrm {d}\sigma +\frac{c}{2R}\int _{\partial B_R} |(x,\nabla \phi _u)|^2 \,\mathrm {d}\sigma \\&\qquad -\frac{cR}{4}\int _{\partial B_R}|\nabla \phi _u|^2 \,\mathrm {d}\sigma -\frac{dR}{q+1}\int _{\partial B_R}|u|^{q+1}\,\mathrm {d}\sigma , \end{aligned} \end{aligned}$$
(5.25)

where we have used the assumption \(k\rho (x)\le (x,\nabla \rho )\) for some \(k\in {{\mathbb {R}}}\) to obtain the first inequality. We now call the right hand side of (5.25) \(I_R\), namely

$$\begin{aligned} \begin{aligned} I_R&{:}{=}-\frac{1}{R}\int _{\partial B_R} |(x,\nabla u)|^2 \,\mathrm {d}\sigma +\frac{R}{2}\int _{\partial B_R}|\nabla u|^2 \,\mathrm {d}\sigma +\frac{bR}{2}\int _{\partial B_R}u^2 \,\mathrm {d}\sigma \\&\quad +\frac{cR}{2}\int _{\partial B_R} \rho \phi _u u^2 \,\mathrm {d}\sigma +\frac{c}{2R}\int _{\partial B_R} |(x,\nabla \phi _u)|^2 \,\mathrm {d}\sigma \\&\quad -\frac{cR}{4}\int _{\partial B_R}|\nabla \phi _u|^2 \,\mathrm {d}\sigma -\frac{dR}{q+1}\int _{\partial B_R}|u|^{q+1}\,\mathrm {d}\sigma . \end{aligned} \end{aligned}$$

We note that \(|(x,\nabla u)|\le R|\nabla u |\) and \(|(x,\nabla \phi _u)|\le R|\nabla \phi _u |\) on \(\partial B_R\), so it holds that

$$\begin{aligned} |I_R|&\le \frac{3R}{2}\int _{\partial B_R}|\nabla u|^2 \,\mathrm {d}\sigma +\frac{bR}{2}\int _{\partial B_R}u^2 \,\mathrm {d}\sigma \\&\quad + \frac{cR}{2}\int _{\partial B_R}\rho \phi _u u^2 \,\mathrm {d}\sigma +\frac{3cR}{4}\int _{\partial B_R}|\nabla \phi _u|^2 \,\mathrm {d}\sigma +\frac{dR}{q+1}\int _{\partial B_R}|u|^{q+1}\,\mathrm {d}\sigma . \end{aligned}$$

Now, since \(|\nabla u|^2\), \(u^2 \in L^1({{\mathbb {R}}}^N)\) as \(u\in E ({{\mathbb {R}}}^N)\subseteq H^1({{\mathbb {R}}}^N)\), \( \rho \phi _u u^2\), \(|\nabla \phi _u|^2 \in L^1({{\mathbb {R}}}^N)\) because \(\int _{{{\mathbb {R}}}^N}\rho \phi _u u^2\,\mathrm {d}x=\int _{{{\mathbb {R}}}^N}|\nabla \phi _u|^2\,\mathrm {d}x\) and \(\phi _u \in D^{1,2}({{\mathbb {R}}}^N)\), and \(|u|^{q+1} \in L^1({{\mathbb {R}}}^N)\) because \(E({{\mathbb {R}}}^N) \hookrightarrow L^s({{\mathbb {R}}}^N)\) for all \(s \in [2,2^{*}]\), then it holds that \(I_{R_n} \rightarrow 0\) as \(n\rightarrow +\infty \) for a suitable sequence \(R_n \rightarrow +\infty .\) Moreover, since (5.25) holds for any \(R>0\), it follows that

$$\begin{aligned}&\frac{N-2}{2}\int _{{{\mathbb {R}}}^N}|\nabla u|^2 \,\mathrm {d}x +\frac{Nb}{2}\int _{{{\mathbb {R}}}^N}u^2\,\mathrm {d}x +\frac{(N+k)c}{2}\int _{{{\mathbb {R}}}^N}\rho \phi _u u^2 \,\mathrm {d}x \\&\quad +\frac{c(2-N)}{4}\int _{{{\mathbb {R}}}^N}|\nabla \phi _u|^2\,\mathrm {d}x -\frac{Nd}{q+1}\int _{{{\mathbb {R}}}^N}|u|^{q+1}\,\mathrm {d}x \le 0, \end{aligned}$$

and so, we obtain

$$\begin{aligned}&\frac{N-2}{2}\int _{{{\mathbb {R}}}^N}|\nabla u|^2 \,\mathrm {d}x +\frac{Nb}{2}\int _{{{\mathbb {R}}}^N}u^2\,\mathrm {d}x +\frac{(N+2+2k)c}{4}\int _{{{\mathbb {R}}}^N}\rho \phi _u u^2 \,\mathrm {d}x\\&\quad -\frac{Nd}{q+1}\int _{{{\mathbb {R}}}^N}|u|^{q+1}\,\mathrm {d}x \le 0, \end{aligned}$$

using the fact that \(\int _{{{\mathbb {R}}}^N}|\nabla \phi _u|^2\,\mathrm {d}x=\int _{{{\mathbb {R}}}^N}\rho \phi _u u^2\,\mathrm {d}x \). This completes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutko, T., Mercuri, C. & Tyler, T.M. Groundstates and infinitely many high energy solutions to a class of nonlinear Schrödinger–Poisson systems. Calc. Var. 60, 174 (2021). https://doi.org/10.1007/s00526-021-02045-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-021-02045-y

Keywords

Mathematics Subject Classification

Navigation