Skip to main content
Log in

Existence and symmetry breaking of ground state solutions for Schrödinger–Poisson systems

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We study the Schrödinger–Poisson system:

$$\begin{aligned} \left\{ \begin{array}{ll} -\Delta u+u+\lambda \phi u=a\left( x\right) \left| u\right| ^{p-2}u &{} \text { in }{{\mathbb {R}}}^{3}, \\ -\Delta \phi =u^{2} &{} \ \text {in }{{\mathbb {R}}}^{3}, \end{array} \right. \end{aligned}$$

where parameter \(\lambda >0\), \(2<p<3\) and \(a\left( x\right) \) is a positive continuous function in \({{\mathbb {R}}}^{3}\). Assuming that \(a\left( x\right) \ge \lim _{\left| x\right| \rightarrow \infty }a\left( x\right) =a_{\infty }>0\) and other suitable conditions, we explore the energy functional corresponding to the system which is bounded below on \( H^{1}\left( {{\mathbb {R}}}^{3}\right) \) and the existence and multiplicity of positive (ground state) solutions for \(\left[ \frac{A\left( p\right) }{p} a_{\infty }\right] ^{2/\left( p-2\right) }<\lambda \le \left[ \frac{A\left( p\right) }{p}a_{1}\right] ^{2/\left( p-2\right) },\) where \(A\left( p\right) :=2^{\left( 6-p\right) /2}\left( 3-p\right) ^{3-p}\left( p-2\right) ^{\left( p-2\right) }\) and \(a_{\infty }<a_{1}<a_{\max }:=\sup _{x\in {{\mathbb {R}}} ^{3}}a\left( x\right) .\) More importantly, when \(a\left( x\right) =a\left( \left| x\right| \right) \) and \(a\left( 0\right) =a_{\max },\) we establish the existence of non-radial ground state solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosetti, A.: On the Schrödinger–Poisson systems. Milan J. Math. 76, 257–274 (2008)

    Article  MathSciNet  Google Scholar 

  2. Ambrosetti, A., Ruiz, D.: Multiple bound states for the Schrö dinger–Poisson problem. Commun. Contemp. Math. 10, 39–404 (2008)

    Article  Google Scholar 

  3. Azzollini, A., Pomponio, A.: Ground state solutions for the nonlinear Schrödinger–Maxwell equations. J. Math. Anal. Appl. 345, 90–108 (2008)

    Article  MathSciNet  Google Scholar 

  4. Binding, P.A., Drábek, P., Huang, Y.X.: On Neumann boundary value problems for some quasilinear elliptic equations. Electron. J. Differ. Equ. 5, 1–11 (1997)

    MathSciNet  MATH  Google Scholar 

  5. Benci, V., Fortunato, D.: An eigenvalue problem for the Schrö dinger–Maxwell equations. Topol. Methods Nonlinear Anal. 11, 283–293 (1998)

    Article  MathSciNet  Google Scholar 

  6. Brown, K.J., Wu, T.F.: A fibrering map approach to a semilinear elliptic boundary value problem. Electron. J. Differ. Equ. 69, 1–9 (2007)

    Google Scholar 

  7. Brown, K.J., Wu, T.F.: A fibering map approach to a potential operator equation and its applications. Differ. Integr. Equ. 22, 1097–1114 (2009)

    MathSciNet  MATH  Google Scholar 

  8. Brown, K.J., Zhang, Y.: The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function. J. Differ. Equ. 193, 481–499 (2003)

    Article  MathSciNet  Google Scholar 

  9. Cerami, G., Vaira, G.: Positive solutions for some non-autonomous Schrödinger–Poisson systems. J. Differ. Equ. 248, 521–543 (2010)

    Article  Google Scholar 

  10. D’Aprile, T., Mugnai, D.: Non-existence results for the coupled Klein–Gordon–Maxwell equations. Adv. Nonlinear Stud. 4, 307–322 (2004)

    Article  MathSciNet  Google Scholar 

  11. Drábek, P., Pohozaev, S.I.: Positive solutions for the \(p\)-Laplacian: application of the fibering method. Proc. R. Soc. Edinburgh Sect. A 127, 703–726 (1997)

    Article  MathSciNet  Google Scholar 

  12. Du, M., Tian, L., Wang, J., Zhang, F.: Existence and asymptotic behavior of solutions for nonlinear Schrödinger–Poisson systems with steep potential well. J. Math. Phys. 57, 031502 (2016)

    Article  MathSciNet  Google Scholar 

  13. Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 17, 324–353 (1974)

    Article  Google Scholar 

  14. Gidas, B., Ni, W.-M., Nirenberg, L.: Symmetry and related properties via the maximum principle. Commun. Math. Phys. 68, 209–243 (1979)

    Article  MathSciNet  Google Scholar 

  15. Gidas, B., Ni, W.-M., Nirenberg, L.: Symmetry of positive solutions of nonlinear elliptic equations in \({{\mathbb{R} }}^{N}\). Math. Anal. Appl. A Adv. Math. Suppl. Stud. 7A, 369–402 (1981)

    MATH  Google Scholar 

  16. Ianni, I., Vaira, G.: On concentration of positive bound states for the Schrödinger–Poisson problem with potentials. Adv. Nonlinear Stud. 8, 573–595 (2008)

    Article  MathSciNet  Google Scholar 

  17. Kwong, M.K.: Uniqueness of positive solution of \(\Delta u-u+u^{p}=0\) in \({{\mathbb{R}}}^{N}\). Arch. Ration. Mech. Anal. 105, 243–266 (1989)

    Article  Google Scholar 

  18. Li, C.: Monotonicity and symmetry of solutions of fully nonlinear elliptic equations on unbounded domains. Commun. Partial Differ. Equ. 16, 585–615 (1991)

    Article  MathSciNet  Google Scholar 

  19. Lions, P.-L.: Solutions of Hartree–Fock equations for Coulomb systems. Commun. Math. Phys. 109, 33–97 (1984)

    Article  MathSciNet  Google Scholar 

  20. Mercuri, C., Moroz, V., Van Schaftingen, J.: Goundstates and radial solutions to nonlinear Schrödinger–Poisson–Slater equations at the critical frequency. Calc. Var. 55, 146 (2016). https://doi.org/10.1007/s00526-016-1079-3

    Article  MATH  Google Scholar 

  21. Mercuri, C., Tyler, T.M.: On a class of nonlinear Schrö dinger–Poisson systems involving a nonradial charge density. Rev. Mat. Iberoam. (2018). https://doi.org/10.4171/rmi/1158

    Article  Google Scholar 

  22. Palais, R.: The Principle of symmetric criticality. Commun. Math. Phys. 69, 19–30 (1979)

    Article  MathSciNet  Google Scholar 

  23. Ruiz, D.: The Schrödinger–Poisson equation under the effect of a nonlinear local term. J. Funct. Anal. 237, 655–674 (2006)

    Article  MathSciNet  Google Scholar 

  24. Ruiz, D.: On the Schrödinger–Poisson–Slater system: behavior of minimizers, radial and nonradial cases. Arch. Ration. Mech. Anal. 198, 349–368 (2010)

    Article  MathSciNet  Google Scholar 

  25. Shao, M., Mao, A.: Schrödinger–Poisson system with concave–convex nonlinearities. J. Math. Phys. 60, 061504 (2019)

    Article  MathSciNet  Google Scholar 

  26. Strauss, W.A.: Existence of solitary waves in higher dimensions. Commun. Math. Phys. 55, 149–162 (1977)

    Article  MathSciNet  Google Scholar 

  27. Sun, M., Su, J., Zhao, L.: Infinitely many solutions for a Schr ödinger–Poisson system with concave and convex nonlinearities. Discrete Contin. Dyn. Syst. 35, 427–440 (2015)

    Article  MathSciNet  Google Scholar 

  28. Sun, J., Wu, T.F., Feng, Z.: Multiplicity of positive solutions for a nonlinear Schrödinger–Poisson system. J. Differ. Equ. 260, 586–627 (2016)

    Article  Google Scholar 

  29. Sun, J., Wu, T.F., Feng, Z.: Non-autonomous Schrö dinger–Poisson problem in \({{\mathbb{R}}}^{3}\). Discrete Contin. Dyn. Syst. 38, 1889–1933 (2018)

    Article  MathSciNet  Google Scholar 

  30. Sun, J., Wu, T.F., Feng, Z.: Two positive solutions to non-autonomous Schrödinger–Poisson systems. Nonlinearity 32, 4002–4032 (2019)

    Article  MathSciNet  Google Scholar 

  31. Tarantello, G.: On nonhomogeneous elliptic equations involving critical Sobolev exponent. Ann. Inst. H. Poincaré Anal. Non Linéaire 9, 281–304 (1992)

    Article  MathSciNet  Google Scholar 

  32. Vaira, G.: Ground states for Schrödinger–Poisson type systems. Ric. Mat. 60, 263–297 (2011)

    Article  MathSciNet  Google Scholar 

  33. Zhao, L., Liu, H., Zhao, F.: Existence and concentration of solutions for the Schrödinger–Poisson equations with steep well potential. J. Differ. Equ. 255, 1–23 (2013)

    Article  Google Scholar 

  34. Zhao, L., Zhao, F.: On the existence of solutions for the Schr ödinger–Poisson equations. J. Math. Anal. Appl. 346, 155–169 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author acknowledges the support of both the Ministry of Science and Technology, Taiwan and the National Center for Theoretical Sciences, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsung-fang Wu.

Additional information

Communicated by Y. Giga.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Tf. Existence and symmetry breaking of ground state solutions for Schrödinger–Poisson systems. Calc. Var. 60, 59 (2021). https://doi.org/10.1007/s00526-021-01953-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-021-01953-3

Mathematics Subject Classification

Navigation