Skip to main content
Log in

On ground states for the Schrödinger-Poisson system with periodic potentials

  • Published:
Indian Journal of Pure and Applied Mathematics Aims and scope Submit manuscript

Abstract

This paper is concerned with the following Schrödinger-Poisson system

$$\left\{ {\begin{array}{*{20}{c}} { - \Delta u + V\left( x \right)u - K\left( x \right)\phi \left( x \right)u = q\left( x \right){{\left| u \right|}^{p - 2}}u,}&{in\;{\mathbb{R}^3},} \\ { - \Delta \phi = K\left( x \right){u^2},}&{in\;{\mathbb{R}^3},} \end{array}} \right.$$

where p ∈ (2, 6), V(x) ∈ C(ℝ3, ℝ) is a general periodic function, K(x) and q(x) are nonperiodic functions. Under suitable assumptions, we prove the existence of ground state solutions via variational methods for strongly indefinite problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Ackermann, A nonlinear superposition principle and multibump solutions of periodic Schrödinger equations, J. Funct. Anal., 234 (2006), 277–320.

    Article  MathSciNet  MATH  Google Scholar 

  2. N. Ackermann, On a periodic Schrödinger equation with nonlocal superlinear part, Math. Z., 248 (2004), 423–443.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Ambrosetti, On Schrödinger-Poisson systems, Milan J. Math., 76 (2008), 257–274.

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Ambrosetti and D. Ruiz, Multiple bound states for the Schrödinger-Poisson problem, Commun. Contemp. Math., 10 (2008), 391–404.

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Azzollini, P. d’Avenia and A. Pomponio, On the Schrödinger-Maxwell equations under the effect of a general nonlinear term, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 779–791.

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Azzollini and A. Pomponio, Ground state solutions for the nonlinear Schrödinger-Maxwell equations, J. Math. Anal. Appl., 345 (2008), 90–108.

    Article  MathSciNet  MATH  Google Scholar 

  7. C. O. Alves, M. A. S. Souto and S. H. M. Soares, Schrödinger-Poisson equations without Ambrosetti-Rabinowitz condition, J. Math. Anal. Appl., 377 (2011), 584–592.

    Article  MathSciNet  MATH  Google Scholar 

  8. T. Bartsch and Y. H. Ding, Deformation theorems on non-metrizable vector spaces and applications to critical point theory, Math. Nach., 279 (2006), 1–22.

    Article  MathSciNet  MATH  Google Scholar 

  9. V. Benci and D. Fortunato, An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Methods Nonlinear Anal., 11 (1998), 283–293.

    MathSciNet  MATH  Google Scholar 

  10. V. Benci and D. Fortunato, Solitary waves of the nonlinear Klein-Gordon equation coupled with Maxwell equations, Rev. Math. Phys., 14 (2002), 409–420.

    Article  MathSciNet  MATH  Google Scholar 

  11. G. Cerami and G. Vaira, Positive solutions for some non-autonomous Schrödinger-Poisson systems, J. Differential Equations, 248 (2010), 521–543.

    Article  MathSciNet  MATH  Google Scholar 

  12. G. Chen and Y. Zheng, Stationary solutions of non-autonomous Maxwell-Dirac systems, J. Differential Equations, 255 (2013), 840–864.

    Article  MathSciNet  MATH  Google Scholar 

  13. M. del Pino and P. Felmer, Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. PDE, 4 (1996), 121–137.

    Article  MathSciNet  MATH  Google Scholar 

  14. T. D’Aprile and D. Mugnai, Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations, Proc. R. Soc. Edinb. A, 134 (2004), 893–906.

    Article  MathSciNet  MATH  Google Scholar 

  15. T. D’Aprile and D. Mugnai, Non-existence results for the coupled Klein-Gordon-Maxwell equations, Adv. Nonlinear Stud., 4 (2004), 307–322.

    MathSciNet  MATH  Google Scholar 

  16. T. D’Aprile and J. Wei, On bound states concentrating on spheres for the Maxwell-Schrödinger equation, SIAM J. Math. Anal., 37 (2005), 321–342.

    Article  MathSciNet  MATH  Google Scholar 

  17. Y. H. Ding and C. Lee, Existence and exponential decay of homoclinics in a nonperiodic superquadratic Hamiltonian system, J. Differential Equations, 246 (2009), 2829–2848.

    Article  MathSciNet  MATH  Google Scholar 

  18. Y. H. Ding and J. C. Wei, Stationary states of nonlinear Dirac equations with general potentials, Rev. Math. Phys., 20 (2008), 1007–1032.

    Article  MathSciNet  MATH  Google Scholar 

  19. Y. H. Ding, Variational methods for strongly indefinite problems, World Scientific Press, 2008.

    Google Scholar 

  20. X. M. He, Multiplicity and concentration of positive solutions for the Schrödinger-Poisson equations, Z. Angew. Math. Phys., 5 (2011), 869–889.

    Article  MATH  Google Scholar 

  21. X. M. He and W. M. Zou, Existence and concentration of ground states for Schrödinger-Poisson equations with critical growth, J. Math. Phys., 53 (2012), 023702.

    Article  MathSciNet  MATH  Google Scholar 

  22. W. N. Huang and X. H. Tang, The existence of infinitely many solutions for the nonlinear Schrödinger-Maxwell equations, Results Math., 65 (2014), 223–234.

    Article  MathSciNet  MATH  Google Scholar 

  23. W. N. Huang and X. H. Tang, Semiclassical solutions for the nonlinear Schrödinger-Maxwell equations, J. Math. Anal. Appl., 415 (2014), 791–802.

    Article  MathSciNet  MATH  Google Scholar 

  24. W. N. Huang and X. H. Tang, Semiclassical solutions for the nonlinear Schrödinger-Maxwell equations with critical nonlinearity, Taiwanese J. Math., 18 (2014), 1203–1217.

    Article  MathSciNet  Google Scholar 

  25. I. Ianni and G. Vaira, On concentration of positive bound states for the Schrödinger-Poisson problem with potentials, Adv. Nonlinear Stud., 8 (2008), 573–595.

    Article  MathSciNet  MATH  Google Scholar 

  26. I. Ianni, Solutions of the Schrödinger-Poisson problem concentrating on spheres, Part II: Existence, Math. Models Methods Appl. Sci., 19 (2009), 877–910.

    Article  MathSciNet  MATH  Google Scholar 

  27. I. Ianni and G. Vaira, Solutions of the Schrödinger-Poisson problem concentrating on spheres, Part I: Necessary condition, Math. Models Methods Appl. Sci., 19 (2009), 707–720.

    Article  MathSciNet  MATH  Google Scholar 

  28. Z. M. Luo, J. Zhang and W. Zhang, Ground state solutions for diffusion system with superlinear nonlinearity, Elec. J. Quali. Theo. Diff. Equa., 17 (2015), 1–12.

    Article  MathSciNet  MATH  Google Scholar 

  29. D. Mugnai, The Schrödinger-Poisson system with positive potential, Commun. Partial Differ. Equ., 36 (2011), 1099–1117.

    Article  MathSciNet  MATH  Google Scholar 

  30. A. Pankov, Periodic nonlinear Schrödinger equation with application to photonic crystals, Milan J. Math., 73 (2005), 259–287.

    Article  MathSciNet  MATH  Google Scholar 

  31. D. Ruiz, The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 237 (2006), 655–674.

    Article  MathSciNet  MATH  Google Scholar 

  32. D. Ruiz, Semiclassical states for coupled Schrödinger-Maxwell equations concentration around a sphere, Math. Models Methods Appl. Sci., 15 (2005), 141–164.

    Article  MathSciNet  MATH  Google Scholar 

  33. D. Ruiz and G. Vaira, Cluster solutions for the Schrödinger-Poisson-Slater problem around a local minimum of potential, Rev. Mat. Iberoam., 27 (2011), 253–271.

    Article  MathSciNet  MATH  Google Scholar 

  34. J. T. Sun, H. B. Chen and J. J. Nieto, On ground state solutions for some non-autonomous Schrödinger-Maxwell systems, J. Differential Equations, 252 (2012), 3365–3380.

    Article  MathSciNet  MATH  Google Scholar 

  35. A. Szulkin and T. Weth, Ground state solutions for some indefinite problems, J. Funct. Anal., 257 (2009), 3802–3822.

    Article  MathSciNet  MATH  Google Scholar 

  36. X. H. Tang, Non-Nehari manifold method for superlinear Schrödinger equation, Taiwanese J. Math., 18 (2014), 1957–1979.

    MathSciNet  Google Scholar 

  37. X. H. Tang, New super-quadratic conditions on ground state solutions for superlinear Schrödinger equation, Adv. Nonlinear Stud., 14 (2014), 361–373.

    Article  MathSciNet  MATH  Google Scholar 

  38. X. H. Tang, Non-Nehari manifold method for asymptotically periodic Schrödinger equations, Sci. China Math., 58 (2015), 715–728.

    Article  MathSciNet  MATH  Google Scholar 

  39. G. Vaira, Ground states for Schrödinger-Poisson type systems, Ricerche Mat., 2 (2011), 263–297.

    Article  MathSciNet  MATH  Google Scholar 

  40. M. Willem, Minimax Theorems, Birkhäuser, Berlin, 1996.

    Book  MATH  Google Scholar 

  41. Z. P. Wang and H. S. Zhou, Positive solution for a nonlinear stationary Schrödinger-Maxwell system in ℝ3, Discrete Contin. Dyn. Syst., 18 (2007), 809–816.

    Article  MathSciNet  Google Scholar 

  42. M. B. Yang, Ground state solutions for a periodic Schröinger equation with superlinear nonlinearities, Nonlinear Anal., 72 (2010), 2620–2627.

    Article  MathSciNet  MATH  Google Scholar 

  43. L. G. Zhao, H. D. Liu and F. K. Zhao, Existence and concentration of solutions for the Schrödinger-Poisson equations with steep well potential, J. Differ. Equa., 255 (2013), 1–23.

    Article  MATH  Google Scholar 

  44. J. Zhang, X. Tang and W. Zhang, Ground-state solutions for superquadratic Hamiltonian elliptic systems with gradient terms, Nonlinear Anal., 95 (2014), 1–10.

    Article  MathSciNet  MATH  Google Scholar 

  45. W. Zhang, X. Tang and J. Zhang, Ground state solutions for a diffusion system, Comput. Math. Appl., 69 (2015), 337–346.

    Article  MathSciNet  Google Scholar 

  46. L. G. Zhao and F. K. Zhao, On the existence of solutions for the Schrödinger-Poisson equations, J. Math. Anal. Appl., 346 (2008), 155–169.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Zhang.

Additional information

This work is partially supported by the NNSF (Nos. 11571370, 11471137, 11471278, 61472136).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Zhang, J. & Xie, X. On ground states for the Schrödinger-Poisson system with periodic potentials. Indian J Pure Appl Math 47, 449–470 (2016). https://doi.org/10.1007/s13226-016-0177-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13226-016-0177-4

Key words

Navigation