Skip to main content
Log in

Clustering of boundary interfaces for an inhomogeneous Allen–Cahn equation on a smooth bounded domain

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We consider the inhomogeneous Allen–Cahn equation

$$\begin{aligned} \epsilon ^2\Delta u\,+\,V(y)(1-u^2)\,u\,=\,0\quad \text{ in }\ \Omega , \qquad \frac{\partial u}{\partial \nu }\,=\,0\quad \text{ on }\ \partial \Omega , \end{aligned}$$

where \(\Omega \) is a bounded domain in \({\mathbb {R}}^2\) with smooth boundary \(\partial \Omega \) and V(x) is a positive smooth function, \(\epsilon >0\) is a small parameter, \(\nu \) denotes the unit outward normal of \(\partial \Omega \). For any fixed integer \(N\ge 2\), we will show the existence of a clustered solution \(u_{\epsilon }\) with N-transition layers near \(\partial \Omega \) with mutual distance \(O(\epsilon |\ln \epsilon |)\), provided that the generalized mean curvature \(\mathcal {H} \) of \(\partial \Omega \) is positive and \(\epsilon \) stays away from a discrete set of values at which resonance occurs. Our result is an extension of those (with dimension two) by Malchiodi et al. (Pac. J. Math. 229(2):447–468, 2007) and Malchiodi et al. (J. Fixed Point Theory Appl. 1(2):305–336, 2007).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alikakos, N.D., Bates, P.W.: On the singular limit in a phase field model of phase transitions. Ann. Inst. H. Poincaré Anal. Non Linéaire 5(2), 141–178 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alikakos, N.D., Bates, P.W., Chen, X.: Periodic traveling waves and locating oscillating patterns in multidimensional domains. Trans. Am. Math. Soc. 351(7), 2777–2805 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alikakos, N.D., Bates, P.W., Fusco, G.: Solutions to the nonautonomous bistable equation with specified Morse index, I. Existence. Trans. Am. Math. Soc. 340(2), 641–654 (1993)

    MathSciNet  MATH  Google Scholar 

  4. Alikakos, N.D., Chen, X., Fusco, G.: Motion of a droplet by surface tension along the boundray. Calc. Var. Partial Differ. Equ. 11(3), 233–305 (2000)

    Article  MATH  Google Scholar 

  5. Alikakos, N.D., Simpson, H.C.: A variational approach for a class of singular perturbation problems and applications. Proc. R. Soc. Edinb. Sect. A 107(1–2), 27–42 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  6. Allen, S., Cahn, J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta. Metall. 27, 1085–1095 (1979)

    Article  Google Scholar 

  7. Angenent, S., Mallet-Paret, J., Peletier, L.A.: Stable transition layers in a semilinear boundary value problem. J. Differ. Equ. 67(2), 212–242 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dancer, E.N., Yan, S.: Multi-layer solutions for an elliptic problem. J. Differ. Equ. 194(2), 382–405 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dancer, E.N., Yan, S.: Construction of various types of solutions for an elliptic problem. Calc. Var. Partial Differ. Equ. 20(1), 93–118 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. del Pino, M.: Layers with nonsmooth interface in a semilinear elliptic problem. Commun. Partial Differ. Equ. 17(9–10), 1695–1708 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. del Pino, M.: Radially symmetric internal layers in a semilinear elliptic system. Trans. Am. Math. Soc. 347(12), 4807–4837 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. del Pino, M., Kowalczyk, M., Wei, J.: Concentration on curves for nonlinear Schrödinger equations. Commun. Pure Appl. Math. 60(1), 113–146 (2007)

    Article  MATH  Google Scholar 

  13. del Pino, M., Kowalczyk, M., Wei, J.: Resonance and interior layers in an inhomogeneous phase transition model. SIAM J. Math. Anal., 38(5), 1542–1564 (2006/07)

  14. del Pino, M., Kowalczyk, M., Wei, J.: The Toda system and clustering interface in the Allen–Cahn equation. Arch. Ration. Mech. Anal. 190(1), 141–187 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. del Pino, M., Kowalczyk, M., Wei, J., Yang, J.: Interface foliation near minimal submanifolds in Riemannian manifolds with positive Ricci curvature. Geom. Funct. Anal. 20(4), 918–957 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. do Nascimento, A.S.: Stable transition layers in a semilinear diffusion equation with spatial inhomogeneities in \(N\)-dimensional domains. J. Differ. Equ. 190(1), 16–38 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Du, Y., Nakashima, K.: Morse index of layered solutions to the heterogeneous Allen–Cahn equation. J. Differ. Equ. 238(1), 87–117 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Du, Y.: The heterogeneous Allen–Cahn equation in a ball: solutions with layers and spikes. J. Differ. Equ. 244(1), 117–169 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Du, Z., Gui, C.: Interior layers for an inhomogeneous Allen–Cahn equation. J. Differ. Equ. 249(2), 215–239 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Du, Z., Wang, L.: Interface foliation for an inhomogeneous Allen–Cahn equation in Riemannian manifolds. Calc. Var. Partial Differ. Equ. 47, 343–381 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Du, Z., Wei, J.: Clustering layers for the Fife–Greenlee problem in \({\mathbb{R}}^{n}\). Proc. R. Soc. Edinb. Sect. A 146(1), 107–139 (2016)

    Article  MATH  Google Scholar 

  22. Fan, X., Xu, B., Yang, J.: Phase transition layers with boundary intersection for an inhomogeneous Allen–Cahn equation. J. Differ. Equ. 266(9), 5821–5866 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  23. Fife, P.: Boundary and interior transition layer phenomena for pairs of second-order differential equations. J. Math. Anal. Appl. 54(2), 497–521 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  24. Fife, P., Greenlee, M.W.: Interior transition Layers of elliptic boundary value problem with a small parameter. Russ. Math. Surv. 29(4), 103–131 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  25. Flores, G., Padilla, P.: Higher energy solutions in the theory of phase transitions: a variational approach. J. Differ. Equ. 169(1), 190–207 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hale, J., Sakamoto, K.: Existence and stability of transition layers. Jpn. J. Appl. Math. 5(3), 367–405 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kohn, R.V., Sternberg, P.: Local minimizers and singular perturbations. Proc. R. Soc. Edinb. Sect. A 111(1–2), 69–84 (1989)

    Article  MATH  Google Scholar 

  28. Kowalczyk, M.: On the existence and Morse index of solutions to the Allen–Cahn equation in two dimensions. Ann. Mat. Pura Appl. 184(1), 17–52 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Li, F., Nakashima, K.: Transition layers for a spatially inhomogeneous Allen–Cahn equation in multi-dimensional domains. Discrete Contin. Dyn. Syst.-A 32, 1391–1420 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mahmoudi, F., Malchiodi, A., Wei, J.: Transition layer for the heterogeneous Allen–Cahn equation. Ann. Inst. H. Poincar\(\acute{e}\) Anal. Non Lin\(\acute{e}\)aire 25(3), 609–631 (2008)

  31. Malchiodi, A., Ni, W.-M., Wei, J.: Boundary clustered interfaces for the Allen–Cahn equation. Pac. J. Math. 229(2), 447–468 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Malchiodi, A., Wei, J.: Boundary interface for the Allen–Cahn equation. J. Fixed Point Theory Appl. 1(2), 305–336 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Modica, L.: The gradient theory of phase transitions and the minimal interface criterion. Arch. Ration. Mech. Anal. 98(2), 123–142 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  34. Morgan, F.: Manifolds with density. Notices Am. Math. Soc. 52, 853–858 (2005)

    MathSciNet  MATH  Google Scholar 

  35. Nakashima, K.: Multi-layered stationary solutions for a spatially inhomogeneous Allen–Cahn equation. J. Differ. Equ. 191(1), 234–276 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  36. Nakashima, K., Tanaka, K.: Clustering layers and boundary layers in spatially inhomogeneous phase transition problems. Ann. Inst. H. Poincaré Anal. Non Linéaire 20(1), 107–143 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  37. Pacard, F., Ritoré, M.: From constant mean curvature hypersurfaces to the gradient theory of phase transitions. J. Differ. Geom. 64(3), 359–423 (2003)

    MathSciNet  MATH  Google Scholar 

  38. Padilla, P., Tonegawa, Y.: On the convergence of stable phase transitions. Commun. Pure Appl. Math. 51(6), 551–579 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  39. Rabinowitz, P.H., Stredulinsky, E.: Mixed states for an Allen–Cahn type equation, I. Commun. Pure Appl. Math. 56(8), 1078–1134 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  40. Rabinowitz, P.H., Stredulinsky, E.: Mixed states for an Allen–Cahn type equation, II. Calc. Var. Partial Differ. Equ. 21(2), 157–207 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  41. Sakamoto, K.: Existence and stability of three-dimensional boundary-interior layers for the Allen–Cahn equation. Taiwan. J. Math. 9(3), 331–358 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  42. Sternberg, P., Zumbrun, K.: Connectivity of phase boundaries in strictly convex domains. Arch. Ration. Mech. Anal. 141(4), 375–400 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  43. Tang, F., Wei, S., Yang, J.: Phase transition layers for Fife–Greenlee problem on smooth bounded domain. Discrete Contin. Dyn. Syst.-A 38(3), 1527–1552 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  44. Wei, J., Yang, J.: Toda system and cluster phase transition layers in an inhomogeneous phase transition model. Asymptot. Anal. 69(3–4), 175–218 (2010)

    MathSciNet  MATH  Google Scholar 

  45. Wei, S., Yang, J.: Connectivity of boundaries by clustering phase transition layers of Fife–Greenlee problem on smooth bounded domain. J. Differ. Equ. 269(3), 1745–1795 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  46. Wei, S., Yang, J.: Clustering phase transition layers with boundary intersection for an inhomogeneous Allen–Cahn equation. Commun. Pure Appl. Anal. 19(5), 2575–2616 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  47. Yang, J., Yang, X.: Clustered interior phase transition layers for an inhomogeneous Allen–Cahn equation in higher dimensional domains. Commun. Pure Appl. Anal. 12(1), 303–340 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

J. Yang and S. Wei are supported by National Natural Science Foundation of China (Nos. 11771167, 11831009 & 12001203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Yang.

Additional information

Communicated by Manuel del Pino.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

The computations of (3.30)

The main objective in this section is to compute the quantities in (3.30). For the cases \(n=3,\ldots ,N \), from the expressions of \({\mathbf {b}}_{1n}, {\mathbf {b}}_{2n} \) as in (3.20)–(3.21), we can obtain that

$$\begin{aligned} {\mathbf {b}}_{1n}&\,=\,- 2 e^{- \sqrt{2} x_n} e^{- \sqrt{2} \beta (f_n-f_{n-1})} +O(e^{- 2\sqrt{2} |x_n+\beta (f_n-f_{n-1})|}) \nonumber \\&\,=\,-2\epsilon (N-n+1) e^{- \sqrt{2} x_n} e^{- \sqrt{2} \beta (\mathfrak {f}_{n}-\mathfrak {f}_{n-1}) } +O(e^{- 2\sqrt{2} |x_n+\beta (f_n-f_{n-1})|}), \end{aligned}$$
(A.1)
$$\begin{aligned} {\mathbf {b}}_{2n}&\,=\,- 2 e^{- \sqrt{2} x_n} e^{- \sqrt{2} \beta (f_n-f_{n-2})} +O(e^{- 2\sqrt{2} |x_n+\beta (f_n-f_{n-2})|}) \nonumber \\&\,=\,-2 \epsilon ^2 (N-n+1)(N-n+2) e^{- \sqrt{2} x_n} e^{- \sqrt{2} \beta (\mathfrak {f}_{n}-\mathfrak {f}_{n-2})} +O(e^{- 2\sqrt{2} |x_n+\beta (f_n-f_{n-2})|}). \end{aligned}$$
(A.2)

Specially, when \( n=1, 2\), we obtain

$$\begin{aligned} {\mathbf {b}}_{11} \,&= \, H\big (\beta (s+ f_{1} ) \big ) -1\\&\,=\,- 2 e^{- \sqrt{2} \,x_1} e^{-2 \sqrt{2} \,\beta \, f_1 } +O(e^{- 2\sqrt{2} \,|x_1+2 \,\beta \, f_1 |}) \\&\,=\,-2\epsilon N \, e^{- \sqrt{2} \,x_1} e^{\,- 2 \sqrt{2} \,\beta \, \mathfrak {f}_{1} \,} +O(e^{- 2\sqrt{2} \,|x_1+2\,\beta \, f_1 |}),\\ {\mathbf {b}}_{21}&\,=\, H\big (\beta (s+ f_{2} ) \big ) -1\\&\,=\, - 2 e^{- \sqrt{2} \,x_1} e^{- \sqrt{2} \,\beta \, (f_{2}+ f_{1}) } +O(e^{- 2\sqrt{2} \,|x_1+ \,\beta \, (f_{2}+ f_{1}) |})\\&\,= - 2 \epsilon ^2N(N-1) e^{- \sqrt{2} \,x_1} e^{- \sqrt{2} \,\beta \, ( \mathfrak {f}_{2}+ \mathfrak {f}_{1}) } +O(e^{- 2\sqrt{2} \,|x_1+ \,\beta \, (f_{2}+ f_{1}) |}), \end{aligned}$$

and

$$\begin{aligned} {\mathbf {b}}_{12} \,&= \, H\big (\beta (s- f_{1} ) \big ) -1\\&\,=\,- 2 e^{- \sqrt{2} \,x_2} e^{- \sqrt{2} \,\beta \, (f_{2}-f_{1}) } +O(e^{- 2\sqrt{2} \,|x_2+ \,\beta \,(f_{2}-f_{1}) |}) \\&\,=\,-2 ( N -1) \epsilon \, e^{- \sqrt{2} \,x_2} e^{- \sqrt{2} \,\beta \, (\mathfrak {f}_{2}-\mathfrak {f}_{1}) } +O(e^{- 2\sqrt{2} \,|x_2+ \,\beta \,(f_{2}-f_{1}) |}),\\ {\mathbf {b}}_{22}&\,=\, H\big (\beta (s+ f_{1} ) \big ) -1 \\&\,=\, - 2 e^{- \sqrt{2} \,x_2} e^{- \sqrt{2} \,\beta \, (f_{2}+f_{1}) } +O(e^{- 2\sqrt{2} \,|x_2+ \,\beta \, (f_{2}+f_{1}) |})\\&\,= - 2 \epsilon ^2 N(N-1)^2 e^{- \sqrt{2} \,x_2} e^{- \sqrt{2} \,\beta \, (f_{2}+f_{1}) } +O(e^{- 2\sqrt{2} \,|x_2+ 2 \,\beta \, f_{2} |}). \end{aligned}$$

Similarly, for the cases \( n =1, \ldots , N-2\), we can also obtain

$$\begin{aligned} {\mathbf {b}}_{3n}&\,=\,2 e^{ \sqrt{2} x_n} e^{- \sqrt{2} \beta (f_{n+1}-f_{n})} +O(e^{- 2\sqrt{2} |x_n+\beta ( f_{n}-f_{n+1})|}) \nonumber \\&\,=\, 2\epsilon (N-n) e^{ \sqrt{2} x_n} e^{- \sqrt{2} \beta (\mathfrak {f}_{n+1}-\mathfrak {f}_n)}+O(e^{- 2\sqrt{2} |x_n+\beta (f_n-f_{n+ 1})|}), \end{aligned}$$
(A.3)
$$\begin{aligned} {\mathbf {b}}_{4n}&\,=\,2 e^{ \sqrt{2} x_n} e^{- \sqrt{2} \beta (f_{n+2}-f_{n})} +O(e^{- 2\sqrt{2} |x_n+\beta (f_{n}-f_{n+2})|})\nonumber \\&\,=\, 2 \epsilon ^2(N-n)(N-n-1) e^{ \sqrt{2} x_n} e^{- \sqrt{2} \beta (\mathfrak {f}_{n+2}-\mathfrak {f}_{n}) } +O \big ( e^{- 2\sqrt{2} |x_n+\beta (f_n-f_{n+2})|} \big ). \end{aligned}$$
(A.4)

And specially, when \( n=N-1, N\), recalling the notation \(f_{N+1} = + \infty \), we have

$$\begin{aligned} {\mathbf {b}}_{3\, N-1} \,&=\, H\big ( \beta (s-f_N) \big ) +1\\&\, = 2 e^{- \sqrt{2} \,x_{N-1}} e^{- \sqrt{2} \,\beta \,(f_{N}-f_{N-1})} +O(e^{- 2\sqrt{2} \,|x_{N-1}+\,\beta (\,f_{N-1} -f_{N-3}\,)|}) \\ \,&= \, 2 \epsilon \, e^{ \sqrt{2} \,x_{N-1}} e^{- \sqrt{2} \,\beta \,(\mathfrak {f}_{N}-\mathfrak {f}_{N-1})} +O(e^{- 2\sqrt{2} \,|x_{N}+\,\beta (\,f_{N}-f_{N-1}\,)|}),\\ {\mathbf {b}}_{4\, N-1} \,&=\, 0, \end{aligned}$$

and

$$\begin{aligned} {\mathbf {b}}_{3\, N} = {\mathbf {b}}_{4\, N} = 0. \end{aligned}$$

By combining the above formulas, we obtain the following:

Case 1: When \(n=3,\ldots ,N-2\), (3.30) holds.

Case 2: When \(n=1, 2\), we obtain that

$$\begin{aligned}&{\mathbf {b}}_{11}\,-\,{\mathbf {b}}_{21}\,+\,{\mathbf {b}}_{31}\,-\,{\mathbf {b}}_{41}\\&\quad \,=\, -2\epsilon N \, e^{- \sqrt{2} \,x_1} e^{\,- 2 \sqrt{2} \,\beta \, \mathfrak {f}_{1} \,} +O(e^{- 2\sqrt{2} \,|x_1+2\,\beta \, f_1 |})\\&\,\qquad +\, 2\epsilon (N-1) \, e^{ \sqrt{2} \,x_1} e^{- \sqrt{2} \,\beta \,(\mathfrak {f}_{2}-\mathfrak {f}_1)}+O(e^{- 2\sqrt{2} \,|x_1+\,\beta \,(f_1-f_{2}\,)|})\\&\,\qquad + 2\epsilon ^2 N(N-1) e^{- \sqrt{2} \,x_1} e^{- \sqrt{2} \,\beta \, ( \mathfrak {f}_{2}+ \mathfrak {f}_{1}) } +O(e^{- 2\sqrt{2} \,|x_1+ \,\beta \, (f_{2}+ f_{1}) |})\\&\,\qquad \,- 2 \epsilon ^2 (N-2)(N-1)\, e^{ \sqrt{2} \,x_1} e^{- \sqrt{2} \,\beta \,(\mathfrak {f}_{3} -\mathfrak {f}_{1})} +O(e^{- 2\sqrt{2} \,|x_1+\,\beta \,(f_1-f_{3}\,)|}), \end{aligned}$$

and

$$\begin{aligned} \begin{aligned}&{\mathbf {b}}_{12}\,-\,{\mathbf {b}}_{22}\,+\,{\mathbf {b}}_{32}\,-\,{\mathbf {b}}_{42}\\&\quad \,=\, -2 \epsilon ( N -1) \, e^{- \sqrt{2} \,x_2} e^{- \sqrt{2} \,\beta \, (\mathfrak {f}_{2}-\mathfrak {f}_{1}) } +O(e^{- 2\sqrt{2} \,|x_2+ \,\beta \,(f_{2}-f_{1}) |}) \\&\,\qquad +\, 2 \epsilon (N-2) \, e^{ \sqrt{2} \,x_2} e^{- \sqrt{2} \,\beta \,(\mathfrak {f}_{3}-\mathfrak {f}_2)}+O(e^{- 2\sqrt{2} \,|x_2+\,\beta \,(f_2-f_{3}\,)|})\\&\,\qquad + 2 \epsilon ^2N(N-1)^2 e^{- \sqrt{2} \,x_2} e^{- \sqrt{2} \,\beta \, (\mathfrak {f}_{2} +\mathfrak {f}_{1} ) } +O(e^{- 2\sqrt{2} \,|x_2+ 2 \,\beta \, f_{2} |})\\&\,\qquad \,- 2 \epsilon ^2(N-2)(N-3) \, e^{ \sqrt{2} \,x_2} e^{- \sqrt{2} \,\beta \,(\mathfrak {f}_{4} -\mathfrak {f}_{2})} +O(e^{- 2\sqrt{2} \,|x_2+\,\beta \,(f_2-f_{4}\,)|}). \end{aligned} \end{aligned}$$

Case 3: When \(n=N-1, N\), we get that

$$\begin{aligned} \begin{aligned}&{\mathbf {b}}_{1 N-1}\,-\,{\mathbf {b}}_{2 N-1}\,+\,{\mathbf {b}}_{3 N-1}\,-\,{\mathbf {b}}_{4N-1}\\&\quad \,=\,-4\epsilon e^{- \sqrt{2} x_{N-1} } e^{- \sqrt{2} \beta (\mathfrak {f}_{N-1}-\mathfrak {f}_{N-2}) } +O(e^{- 2\sqrt{2} |x_{N-1} +\beta (f_{N-1} -f_{N-2})|}) \\&\,\qquad + 2 \epsilon \, e^{ \sqrt{2} \,x_{N-1}} e^{- \sqrt{2} \,\beta \,(\mathfrak {f}_{N}-\mathfrak {f}_{N-1})} +O(e^{- 2\sqrt{2} \,|x_{N}+\,\beta (\,f_{N}-f_{N-1}\,)|})\\&\,\qquad + 12 \epsilon ^2 e^{- \sqrt{2} x_{N-1}} e^{- \sqrt{2} \beta (\mathfrak {f}_{N-1}-\mathfrak {f}_{N-3})} +O(e^{- 2\sqrt{2} |x_{N-1}+\beta (f_{N-1}-f_{N-3})|}), \end{aligned} \end{aligned}$$

and

$$\begin{aligned} \begin{aligned}&{\mathbf {b}}_{1N}\,-\,{\mathbf {b}}_{2N}\,+\,{\mathbf {b}}_{3N}\,-\,{\mathbf {b}}_{4N}\\&\quad \,=\,-2 \epsilon \, e^{- \sqrt{2} \,x_N} e^{- \sqrt{2} \,\beta \,(\mathfrak {f}_{N}-\mathfrak {f}_{N-1})} +O(e^{- 2\sqrt{2} \,|x_N+\,\beta (\,f_N-f_{N-1}\,)|}) \\&\,\qquad + \, 4 \epsilon ^2\, e^{- \sqrt{2} \,x_N} e^{- \sqrt{2} \,\beta \,(\mathfrak {f}_{N}-\mathfrak {f}_{N-2})}+O(e^{- 2\sqrt{2} \,|x_N+\,\beta (\,f_N-f_{N-2}\,)|}). \end{aligned} \end{aligned}$$

Linear problem

We first set

$$\begin{aligned} {\mathcal {S}}=\mathbb {R}\times (0, \ell /\epsilon ), \end{aligned}$$

and provide the following lemma in [13].

Lemma B.1

(Lemma 4.2 in [13]) For a given function \(\Phi _*(x, z)\in L^2({\mathcal {S}})\) with

$$\begin{aligned} \int _{\mathbb {R}} \Phi _*(x,z) H_x \, {\mathrm {d}}x\,=\, 0,\quad 0<z<\frac{\ell }{\epsilon }, \end{aligned}$$

let us consider the following problem

$$\begin{aligned} \phi _{*,xx} \, +\, \phi _{*,zz} \, +\, (1-3H^2)\, \phi _{*}\,=\, \Phi _* \quad \text{ in } {\mathcal {S}}, \end{aligned}$$
(B.1)

with the conditions

$$\begin{aligned}&\phi _{*}(x, 0)\,=\, \phi _{*}(x, \ell /{\epsilon }), \quad \phi _{*, z}(x, 0)\,=\, \phi _{*, z}(x, \ell /{\epsilon }), \quad x\in \mathbb {R}, \end{aligned}$$
(B.2)
$$\begin{aligned}&\int _\mathbb {R}{\phi _{*}(x,z) H_x}\,{\mathrm {d}}x =0,\quad 0<z<\frac{\ell }{\epsilon }. \end{aligned}$$
(B.3)

The problem (B.1)–(B.3) has a unique solution \(\phi _{*} \in H^2({\mathcal {S}})\). \(\square \)

Then, by using the above lemma, we can obtain following result:

Lemma B.2

For a given function \(\Phi ^*(x, z)\in L^2({\mathcal {S}})\) with

$$\begin{aligned} \int _{\mathbb {R}} \Phi ^*(x,z) H_x \, {\mathrm {d}}x\,=\, 0,\quad 0<z<\frac{\ell }{\epsilon }, \end{aligned}$$

consider the following problem

$$\begin{aligned} \phi ^*_{zz}+ \beta ^{2}\,\Big [\phi ^{*}_{xx}\, +\, (1-3H^2)\phi ^{*}\Big ]=\, \Phi ^* \quad \text{ in } {\mathcal {S}}, \end{aligned}$$
(B.4)

with the conditions

$$\begin{aligned}&\phi ^{*}(x, 0)\,=\, \phi ^{*}(x, \ell /{\epsilon }), \quad \phi ^{*}_z (x, 0)\,=\, \phi ^*_{ z}(x, \ell /{\epsilon }), \quad x\in \mathbb {R}, \end{aligned}$$
(B.5)
$$\begin{aligned}&\int _\mathbb {R}{\phi ^{*}(x,z) H_x}\,{\mathrm {d}}x =0,\quad 0<z<\frac{\ell }{\epsilon }. \end{aligned}$$
(B.6)

There exists a unique solution \(\phi ^{*} \in H^2({\mathcal {S}})\) to problem (B.4)–(B.6), which satisfies

$$\begin{aligned} \Vert \phi _{*}\Vert _{H^2( {\mathcal {S}})} \le C \Vert \Phi ^* \Vert _{L^2({\mathcal {S}})}. \end{aligned}$$
(B.7)

Proof

Let

$$\begin{aligned} \phi ^{*}(x,z)= \tilde{\phi }^{*} (x, \iota (z)), \quad \iota (z) = \epsilon ^{-1} \int _0^{\epsilon z} \beta (r) {\mathrm {d}}r. \end{aligned}$$

Here, the map

$$\begin{aligned} \iota : \Big [ 0, \frac{\ell }{\epsilon }\Big )\rightarrow \Big [ 0, \frac{\hat{\ell }}{\epsilon }\Big ), \quad {\tilde{z}} = \iota (z) \end{aligned}$$

is a diffeomorphism, where \( \hat{\ell } = \int _0^\ell \beta (r) {\mathrm {d}}r. \)

It is easy to derive that

$$\begin{aligned} \phi ^{*}_{z} (x,z) \,=\, \beta \,\tilde{\phi }^{*}_{{\tilde{z}}}(x,{\tilde{z}}), \qquad \phi ^{*}_{zz} (x,z)\,=\, \beta ^2\, \tilde{\phi }^{*}_{{\tilde{z}}{\tilde{z}}}(x,{\tilde{z}}) \,+\, \epsilon \, \beta '\,\tilde{\phi }^{*}_{{\tilde{z}}}(x,{\tilde{z}}), \end{aligned}$$

while differentiation in x does not change. Therefore, problem (B.4)–(B.6) can be rewritten as

$$\begin{aligned} \tilde{\phi }^{*}_{{\tilde{z}}{\tilde{z}}} \,+\, \Big [ \tilde{\phi }^{*}_{xx}\, +\, (1-3H^2) \tilde{\phi }^{*}\Big ]&=\, \tilde{ \Phi }^*\,-\, \epsilon \,\beta ^{-2}\, \beta '\,\tilde{\phi }^{*}_{{\tilde{z}}}\quad \text{ in } \mathbb {R}\times \Big [0,\frac{\hat{\ell }}{\epsilon }\Big ), \end{aligned}$$
(B.8)
$$\begin{aligned} \int _{\mathbb {R}} \tilde{\Phi }^*(x, {\tilde{z}}) H_x \, {\mathrm {d}}x\,=\,&0,\quad 0<{\tilde{z}}< \frac{\hat{\ell }}{\epsilon }, \end{aligned}$$
(B.9)

with the conditions

$$\begin{aligned}&\tilde{\phi }^{*}(x, 0)\,=\, \phi ^{*}(x, \hat{\ell } /{\epsilon }), \quad \tilde{\phi }^{*}_{{\tilde{z}}} (x, 0)\,=\, \tilde{\phi }^*_{ {\tilde{z}} }(x, \hat{\ell }/{\epsilon }), \quad x\in \mathbb {R}, \end{aligned}$$
(B.10)
$$\begin{aligned}&\int _\mathbb {R} {\tilde{\phi }}^*(x,{\tilde{z}}) H_x\,{\mathrm {d}}x=0,\quad 0<{\tilde{z}}<\frac{\hat{\ell }}{\epsilon }. \end{aligned}$$
(B.11)

From Lemma B.1, we can know that problem (B.8)–(B.11) has a unique solution \(\tilde{\phi }^{*}(x, {\tilde{z}}) \). The result follows by transforming \(\tilde{\phi }^{*}(x, \iota (z) )\) into \( \phi ^{*}(x, z)\) via change of variables. By using the method of sub-supersolutions, we can get the estimate (B.7). This concludes the proof of the lemma. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, L., Wei, S. & Yang, J. Clustering of boundary interfaces for an inhomogeneous Allen–Cahn equation on a smooth bounded domain. Calc. Var. 60, 70 (2021). https://doi.org/10.1007/s00526-020-01913-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-020-01913-3

Mathematics Subject Classification

Navigation