Skip to main content
Log in

Interface foliation for an inhomogeneous Allen–Cahn equation in Riemannian manifolds

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Let \({(\mathcal{M}, \tilde{g})}\) be an N-dimensional smooth compact Riemannian manifold. We consider the problem \({\varepsilon^2 \triangle_{\tilde{g}} \tilde{u} + V(\tilde{z})\tilde{u}(1-\tilde{u}^2)=0\; {\rm in}\; \mathcal{M}}\), where \({\varepsilon > 0}\) is a small parameter and V is a positive, smooth function in \({\mathcal{M}}\). Let \({\kappa \subset \mathcal{M}}\) be an (N − 1)-dimensional smooth submanifold that divides \({\mathcal{M}}\) into two disjoint components \({\mathcal{M}_{\pm}}\). We assume κ is stationary and non-degenerate relative to the weighted area functional \({\int_{\kappa}V^{\frac{1}{2}}}\). For each integer m ≥ 2, we prove the existence of a sequence \({\varepsilon = \varepsilon_\ell \rightarrow 0}\), and two opposite directional solutions with m-transition layers near κ, whose mutual distance is \({{\rm O}(\varepsilon | \log \varepsilon | )}\). Moreover, the interaction between neighboring layers is governed by a type of Jacobi–Toda system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alikakos N., Chen X., Fusco G.: Motion of a droplet by surface tension along the boundary. Calc. Var. PDE 11, 233–306 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Allen S., Cahn J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta. Metall. 27, 1084–1095 (1979)

    Google Scholar 

  3. Bronsard L., Stoth B.: On the existence of high multiplicity interfaces. Math. Res. Lett. 3, 117–131 (1996)

    MathSciNet  Google Scholar 

  4. Dancer E.N., Yan S.: multi-layer solutions for an elliptic problem. J. Differ. Equ. 194, 382–405 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. del Pino M., Kowalczyk M., Wei J.: Concentration on curves for nonlinear Schrödinger equations. Commun. Pure Appl. Math. 70, 113–146 (2007)

    Article  MathSciNet  Google Scholar 

  6. del Pino M., Kowalczyk M., Wei J.: The Toda system and clustering interface in the Allen–Cahn equation. Arch. Ration. Mech. Anal. 190(1), 141–187 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. del Pino M., Kowalczyk M., Pacard F., Wei J.: Multiple-end solutions to the Allen–Cahn equation in R 2. J. Funct. Anal. 258(2), 458–503 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. del Pino M., Kowalczyk M., Wei J.: The Jacobi–Toda system and foliated interfaces. Discret. Contin. Dyn. Syst. A 28(3), 975–1006 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. del Pino M., Kowalczyk M., Wei J., Yang J.: Interface foliation near minimal submanifolds in Riemannian manifolds with positive Ricci curvature. Geom. Funct. Anal. 20(4), 918–957 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Du Z., Gui C.: Interior layers for an inhomogeneous Allen–Cahn equation. J. Differ. Equ. 249, 215–239 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Du, Z., Lai, B.: Transition layers for an inhomogeneous Allen–Cahn equation in Riemannian manifolds, submitted

  12. Du Y., Nakashima K.: Morse index of layered solutions to the heterogeneous Allen–Cahn equation. J. Differ. Equ. 238(1), 87–117 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Flores G., Padilla P.: Higher energy solutions in the theory of phase transitions: a variational approach. J. Differ. Equ. 169, 190–207 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kohn R.V., Sternberg P.: Local minimizers and singular perturbations. Proc. R. Soc. Edinb. 11, 69–84 (1989)

    Article  MathSciNet  Google Scholar 

  15. Kowalczyk M.: On the existence and Morse index of solutions to the Allen–Cahn equation in two dimensions. Annali di Matematica Pura et Aplicata (4) 184(1), 17–52 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mahmoudi F., Mazzeo R., Pacard F.: Constant mean curvature hypersurfaces condensing on a submanifold. Geom. Funct. Anal. 16(4), 924–958 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Malchiodi A., Montenegro M.: Multidimensional boundary layers for a singularly perturbed Neumann problem. Duke Math. J. 124(1), 105–143 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Malchiodi A., Wei J.: Boundary interface for the Allen–Cahn equation. J. Fixed Point Theory Appl. 1(2), 305–336 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Malchiodi A., Ni W.-M., Wei J.: Boundary clustered interfaces for the Allen–Cahn equation. Pac. J. Math. 229(2), 447–468 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Modica L.: The gradient theory of phase transitions and the minimal interface criterion. Arch. Ration. Mech. Anal. 98, 357–383 (1987)

    Article  MathSciNet  Google Scholar 

  21. Nakashima K.: Multi-layered stationary solutions for a spatially inhomogeneous Allen–Cahn equation. J. Differ. Equ. 191, 234–276 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Nakashima K., Tanaka K.: Clustering layers and boundary layers in spatially inhomogenerous phase transition problems. Ann. Inst. H. Poincaré Anal. Non Linéaire 20(1), 107–143 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Pacard F., Ritoré M.: From constant mean curvature hypersurfaces to the gradient theory of phase transitions. J. Differ. Geom. 64, 359–423 (2003)

    MATH  Google Scholar 

  24. Padilla P., Tonegawa Y.: On the convergence of stable phase transitions. Commun. Pure Appl. Math. 51, 551–579 (1998)

    Article  MathSciNet  Google Scholar 

  25. Rabinowitz P.H., Stredulinsky E.: Mixed states for an Allen–Cahn type equation, I. Commun. Pure Appl. Math. 56, 1078–1134 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rabinowitz P.H., Stredulinsky E.: Mixed states for an Allen–Cahn type equation, II. Calc. Var. Partial Differ. Equ. 21, 157–207 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sternberg P., Zumbrun K.: Connectivity of phase boundaries in strictly convex domains. Arch. Ration. Mech. Anal. 141(4), 375–400 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wei J., Yang J.: Toda system and cluster phase transition layers in an inhomogeneous phase transition model. Asymptot. Anal. 69(3–4), 175–218 (2010)

    MathSciNet  MATH  Google Scholar 

  29. Yang, J., Yang, X.: Clustered interior phase transition layers for an inhomogeneous Allen–Cahn equation on higher dimensional domain, to appear

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuoran Du.

Additional information

Communicated by A. Malchiodi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, Z., Wang, L. Interface foliation for an inhomogeneous Allen–Cahn equation in Riemannian manifolds. Calc. Var. 47, 343–381 (2013). https://doi.org/10.1007/s00526-012-0521-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-012-0521-4

Mathematics Subject Classification

Navigation