Skip to main content
Log in

Interface Foliation near Minimal Submanifolds in Riemannian Manifolds with Positive Ricci Curvature

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

Let \({(\mathcal {M},\tilde{g})}\) be an N-dimensional smooth compact Riemannian manifold. We consider the singularly perturbed Allen–Cahn equation

$$\varepsilon ^2 \Delta _{\tilde g} u \, + \, (1 - u^2 )u\, =\, 0 \quad {\rm{in}} \, \mathcal {M},$$

where \({\varepsilon}\) is a small parameter. Let \({{\mathcal {K} \subset \mathcal {M}}}\) be an (N - 1)-dimensional smooth minimal submanifold that separates \({\mathcal{M}}\) into two disjoint components. Assume that \({\mathcal{K}}\) is nondegenerate in the sense that it does not support non-trivial Jacobi fields, and that \({{|A_\mathcal {K} |^2 + {\rm {Ric}}_{\tilde g} (v _{\mathcal K}, v_{\mathcal K})}}\) is positive along \({\mathcal{K}}\). Then for each integer m ≥ 2, we establish the existence of a sequence \({\varepsilon = \varepsilon{_j} \rightarrow 0}\), and solutions \({u_\varepsilon}\) with m-transition layers near \({\mathcal{K}}\), with mutual distance \({O(\varepsilon |\, {\rm {ln}}\, \varepsilon|)}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alikakos N.D., Chen X., Fusco G.: Motion of a droplet by surface tension along the boundary. Cal. Var. PDE 11, 233–306 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Allen S., Cahn J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta. Metall. 27, 1084–1095 (1979)

    Google Scholar 

  3. I. Birindelli, R. Mazzeo, Symmetry of solution of two-phase semilinear elliptic equations on hyperbolic space, http://arxiv.org/abs/0806.2952v1

  4. Bronsard L., Stoth B.: On the existence of high multiplicity interfaces. Math. Res. Lett. 3, 117–131 (1996)

    MathSciNet  Google Scholar 

  5. Caffarelli L., Córdoba A.: Uniform convergence of a singular perturbation problem. Comm. Pure Appl. Math. XLVII, 1–12 (1995)

    Google Scholar 

  6. Chavel I.: Riemannian Geometry-A Modern Introduction, Cambridge Tracts in Math. 108. Cambridge Univ. Press, Cambridge (1993)

    Google Scholar 

  7. Dancer E.N., Yan S.: Multi-layer solutions for an elliptic problem. J. Diff. Eqns. 194, 382–405 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. del Pino M., Kowalczyk M., Wei J.: Concentration on curves for nonlinear Schrödinger equations. Comm. Pure Appl. Math. 70, 113–146 (2007)

    Article  Google Scholar 

  9. del Pino M., Kowalczyk M., Wei J.: The Toda system and clustering interface in the Allen–Cahn equation. Archive Rational Mechanical Analysis 190(1), 141–187 (2008)

    Article  MATH  Google Scholar 

  10. del Pino M., Kowalczyk M., Pacard F., Wei J.: Multiple-end solutions to the Allen–Cahn equation in ℝ2, J. Funct. Anal. 258(2), 458–503 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  11. Garza-Hume C.E., Padilla P.: Closed geodesic on oval surfaces and pattern formation, Comm. Anal. Geom. 11(2), 223–233 (2003)

    MATH  MathSciNet  Google Scholar 

  12. Kato T.: Perturbation Theory for Linear Operators, Classics in Mathematics. Springer-Verlag, Berlin (1995)

    Google Scholar 

  13. Kohn R.V., Sternberg P.: Local minimizers and singular perturbations. Proc. Royal Soc. Edinburgh 11A, 69–84 (1989)

    MathSciNet  Google Scholar 

  14. B.M. Levitan, I.S. Sargsjan, Sturm-Liouville and Dirac Operator. Mathematics and its Application (Soviet Series) 59. Kluwer Academic Publishers Group, Dordrecht (1991).

  15. Li P., Yau S.-T.: On the Schrödinger equation and the eigenvalue problem. Commun. Math. Phys. 88, 309–318 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  16. Mahmoudi F., Malchiodi A.: Concentration on minimal submanifolds for a singularly perturbed Neumann problem. Adv. Math. 209(2), 460–525 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Mahmoudi F., Mazzeo R., Pacard F.: Constant mean curvature hypersurfaces condensing on a submanifold. Geom. Funct. Anal. 16(4), 924–958 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Malchiodi A.: Concentration at curves for a singularly perturbed Neumann problem in three-dimensional domains. Geom. Funct. Anal. 15(6), 1162–1222 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Malchiodi A., Montenegro M.: Boundary concentration phenomena for a singularly perturbed elliptic problem. Commun. Pure Appl. Math. 55, 1507–1568 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. Malchiodi A., Montenegro M.: Multidimensional boundary layers for a singularly perturbed Neumann problem. Duke Math. J. 124(1), 105–143 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  21. Malchiodi A., Wei J.: Boundary interface for the Allen–Cahn equation. J. Fixed Point Theory Appl. 1(2), 305–336 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  22. Mazzeo R., Pacard F.: Foliations by constant mean curvature tubes. Comm. Anal. Geom. 13(4), 633–670 (2005)

    MATH  MathSciNet  Google Scholar 

  23. Minakshisundaram S., Pleijel A.: Some properties of the eigenfunctions of the Laplace operator on Riemannian manifolds. Canad. J. Math. 1, 242–256 (1949)

    MATH  MathSciNet  Google Scholar 

  24. Modica L.: The gradient theory of phase transitions and the minimal interface criterion. Arch. Rat. Mech. Anal. 98, 357–383 (1987)

    Article  MathSciNet  Google Scholar 

  25. L. Modica, Convergence to minimal surfaces problem and global solutions of u =  2(u 3u), Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis (Rome, 1978), Pitagora, Bologna, (1979), 223–244.

  26. Nakashima K.: Multi-layered stationary solutions for a spatially inhomogeneous Allen–Cahn equation. J. Diff. Eqns. 191, 234–276 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  27. Nakashima K., Tanaka K.: Clustering layers and boundary layers in spatially inhomogeneous phase transition problems. Ann. Inst. H. Poincaré Anal. Non Linéaire 20(1), 107–143 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  28. Pacard F., Ritoré M.: From constant mean curvature hypersurfaces to the gradient theory of phase transitions. J. Diff. Geom. 64, 359–423 (2003)

    MATH  Google Scholar 

  29. Padilla P., Tonegawa Y.: On the convergence of stable phase transitions. Comm. Pure Appl. Math. 51, 551–579 (1998)

    Article  MathSciNet  Google Scholar 

  30. Röger M., Tonegawa Y.: Convergence of phase-field approximations to the Gibbs-Thomson law. Cal. Var. PDE 32, 111–136 (2008)

    Article  MATH  Google Scholar 

  31. J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer Verlag, Berlin, 1992.

    Google Scholar 

  32. M. Spivak, A Comprehensive Introduction to Differential Geometry, Second edition, Publish or Perish Inc. Wilmington, Del., (1979).

  33. Tonegawa Y.: Phase field model with a variable chemical potential. Proc. Roy. Soc. Edinburgh Sect. A 132(4), 993–1019 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel del Pino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

del Pino, M., Kowalczyk, M., Wei, J. et al. Interface Foliation near Minimal Submanifolds in Riemannian Manifolds with Positive Ricci Curvature. Geom. Funct. Anal. 20, 918–957 (2010). https://doi.org/10.1007/s00039-010-0083-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-010-0083-6

Keywords and phrases

2010 Mathematics Subject Classification

Navigation