Skip to main content
Log in

Existence and regularity of optimal shapes for elliptic operators with drift

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

This paper is dedicated to the study of shape optimization problems for the first eigenvalue of the elliptic operator with drift \(L = -\Delta + V(x) \cdot \nabla \) with Dirichlet boundary conditions, where V is a bounded vector field. In the first instance, we prove the existence of a principal eigenvalue \(\lambda _1(\Omega ,V)\) for a bounded quasi-open set \(\Omega \) which enjoys similar properties to the case of open sets. Then, given \(m>0\) and \(\tau \ge 0\), we show that the minimum of the following non-variational problem

$$\begin{aligned} \min \Big \{\lambda _1(\Omega ,V)\ :\ \Omega \subset D\ \text {quasi-open},\ |\Omega |\le m,\ \Vert V\Vert _{L^\infty }\le \tau \Big \}. \end{aligned}$$

is achieved, where the box \(D\subset {\mathbb {R}}^d\) is a bounded open set. The existence when V is fixed, as well as when V varies among all the vector fields which are the gradient of a Lipschitz function, are also proved. The second interest and main result of this paper is the regularity of the optimal shape \(\Omega ^*\) solving the minimization problem

$$\begin{aligned} \min \Big \{\lambda _1(\Omega ,\nabla \Phi )\ :\ \Omega \subset D\ \text {quasi-open},\ |\Omega |\le m\Big \}, \end{aligned}$$

where \(\Phi \) is a given Lipschitz function on D. We prove that the optimal set \(\Omega ^*\) is open and that its topological boundary \(\partial \Omega ^*\) is composed of a regular part, which is locally the graph of a \(C^{1,\alpha }\) function, and a singular part, which is empty if \(d<d^*\), discrete if \(d=d^*\) and of locally finite \({\mathcal {H}}^{d-d^*}\) Hausdorff measure if \(d>d^*\), where \(d^*\in \{5,6,7\}\) is the smallest dimension at which there exists a global solution to the one-phase free boundary problem with singularities. Moreover, if D is smooth, we prove that, for each \(x\in \partial \Omega ^{*}\cap \partial D\), \(\partial \Omega ^*\) is \(C^{1,1/2}\) in a neighborhood of x.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aguilera, N., Alt, H.W., Caffarelli, L.A.: An optimization problem with volume constraint. SIAM J. Control Optim. 24, 191–198 (1986)

    Article  MathSciNet  Google Scholar 

  2. Alt, H.W., Caffarelli, L.A.: Existence and regularity for a minimum problem with free boundary. J. Reine Angew. Math. 325, 105–144 (1981)

    MathSciNet  MATH  Google Scholar 

  3. Alt, H.W., Caffarelli, L.A., Friedman, A.: Variational problems with two phases and their free boundary. Trans. Am. Math. Soc. 282, 431–461 (1984)

    Article  Google Scholar 

  4. Berestycki, H., Nirenberg, L., Varadhan, S.R.S.: The principal eigenvalue and maximum principle for second-order elliptic operators in general domains. Commun. Pure Appl. Math. 47(1), 47–92 (1994)

    Article  MathSciNet  Google Scholar 

  5. Briançon, T., Hayouni, M., Pierre, M.: Lipschitz continuity of state functions in some optimal shaping. Calc. Var. Partial. Differ. Equ. 23(1), 13–32 (2005)

    Article  MathSciNet  Google Scholar 

  6. Briançon, T., Lamboley, J.: Regularity of the optimal shape for the first eigenvalue of the Laplacian with volume and inclusion constraints. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 26(4), 1149–1163 (2009)

    Article  MathSciNet  Google Scholar 

  7. Briancon, T.: Regularity of optimal shapes for the Dirichlet’s energy with volume constraint. ESAIM, Control Optim. Calc. Var. 10, 99–122 (2004)

    Article  MathSciNet  Google Scholar 

  8. Bucur, D.: Minimization of the \(k\)-th eigenvalue of the Dirichlet Laplacian. Arch. Rat. Mech. Anal. 206(3), 1073–1083 (2012)

    Article  MathSciNet  Google Scholar 

  9. Bucur, D., Buttazzo, G.: Variational methods in shape optimization problems, vol. 65. Birkhäuser, Basel (2005)

    Book  Google Scholar 

  10. Bucur, D., Mazzoleni, D., Pratelli, A., Velichkov, B.: Lipschitz regularity of the eigenfunctions on optimal domains. Arch. Rat. Mech. Anal. 216(1), 117–151 (2015)

    Article  MathSciNet  Google Scholar 

  11. Bucur, D., Velichkov, B.: Multiphase shape optimization problems. SIAM J. Control Optim. 52(6), 3556–3591 (2015)

    Article  MathSciNet  Google Scholar 

  12. Buttazzo, G.: Spectral optimization problems. Rev. Mat. Complut. 24(2), 277–322 (2011)

    Article  MathSciNet  Google Scholar 

  13. Buttazzo, G., Dal Maso, G.: An existence result for a class of shape optimization problems. Arch. Rat. Mech. Anal. 122(2), 183–195 (1993)

    Article  MathSciNet  Google Scholar 

  14. Buttazzo, G., Velichkov, B.: The spectral drop problem. In: Recent advances in partial differential equations and applications. International conference in honor of Hugo Beirão de Veiga’s 70th birthday, Levico Terme, Italy, February 17–21, 2014. Proceedings, pp. 111–135. Providence, RI: American Mathematical Society (AMS) (2016)

  15. Buttazzo, G., Velichkov, B.: A shape optimal control problem with changing sign data. SIAM J. Math. Anal. 50(3), 2608–2627 (2018)

    Article  MathSciNet  Google Scholar 

  16. Caffarelli, L.A., Jerison, D., Kenig, C.E.: Global energy minimizers for free boundary problems and full regularity in three dimensions. In: Noncompact problems at the intersection of geometry, analysis, and topology. Proceedings of the conference on noncompact variational problems and general relativity held in honor of Haim Brezis and Felix Browder at Rutgers University, New Brunswick, NJ, USA, October 14–18, 2001, pp. 83–97. Providence, RI: American Mathematical Society (AMS) (2004)

  17. Caffarelli, L.A., Lin, F.-H.: Singularly perturbed elliptic systems and multi-valued harmonic functions with free boundaries. J. Am. Math. Soc. 21(3), 847–862 (2008)

    Article  MathSciNet  Google Scholar 

  18. Chang-Lara, H., Savin, O.: Boundary regularity for the free boundary in the one-phase problem. arXiv preprintarXiv:1709.03371 (2017)

  19. Cioranescu, D., Murat, F.: Un terme etrange venu d’ailleurs. Nonlinear partial differential equations and their applications. Coll. de France Semin., Vol. II, Res. Notes Math. 60, 98–138 (1982)

    MATH  Google Scholar 

  20. Conti, M., Terracini, S., Verzini, G.: An optimal partition problem related to nonlinear eigenvalues. J. Funct. Anal. 198(1), 160–196 (2003)

    Article  MathSciNet  Google Scholar 

  21. De Silva, D.: Free boundary regularity for a problem with right-hand side. Interfaces Free Bound. 13(2), 223–238 (2011)

    Article  MathSciNet  Google Scholar 

  22. De Silva, D., Jerison, D.: A singular energy minimizing free boundary. J. Reine Angew. Math. 635, 1–21 (2009)

    Article  MathSciNet  Google Scholar 

  23. Edelen, N., Engelstein, M.: Quantitative stratification for some free-boundary problems. arXiv preprintarXiv:1702.04325 (2017)

  24. Evans, L .C.: Partial Differential Equations, vol. 19. American Mathematical Society, Providence (1998)

    MATH  Google Scholar 

  25. Evans, L .C., Gariepy, R .F.: Measure Theory and Fine Properties of Functions, 2 revised ed edn. CRC Press, Boca Raton (2015)

    Book  Google Scholar 

  26. Garofalo, N., Lin, F.-H.: Monotonicity properties of variational integrals, \(A_p\) weights and unique continuation. Indiana Univ. Math. J. 35, 245–268 (1986)

    Article  MathSciNet  Google Scholar 

  27. Giaquinta, M., Giusti, E.: Global \(\text{ C }^{1,\alpha }\)-regularity for second order quasilinear elliptic equations in divergence form. J. Reine Angew. Math. 351, 55–65 (1984)

    MathSciNet  MATH  Google Scholar 

  28. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Reprint of the 1998 ed. Berlin: Springer, reprint of the 1998 ed. edition (2001)

  29. Hamel, F., Nadirashvili, N., Russ, E.: A Faber-Krahn inequality with drift. arXiv preprintarXiv:math/0607585 (2006)

  30. Hamel, F., Nadirashvili, N., Russ, E.: Rearrangement inequalities and applications to isoperimetric problems for eigenvalues. Ann. Math. (2) 174(2), 647–755 (2011)

    Article  MathSciNet  Google Scholar 

  31. Henrot, A., Pierre, M.: Variation et optimisation de formes. Une analyse géométrique. Springer, Berlin (2005)

    Book  Google Scholar 

  32. Jerison, D., Savin, O.: Some remarks on stability of cones for the one-phase free boundary problem. Geom. Funct. Anal. 25(4), 1240–1257 (2015)

    Article  MathSciNet  Google Scholar 

  33. Kato, T.: Perturbation theory for linear operators. Reprint of the corr. print. of the 2nd ed. 1980. Berlin: Springer-Verlag, reprint of the corr. print. of the 2nd ed. 1980 edition (1995)

  34. Kinderlehrer, D., Nirenberg, L.: Regularity in free boundary problems. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 4, 373–391 (1977)

    MathSciNet  MATH  Google Scholar 

  35. Kriventsov, D., Lin, F.: Regularity for shape optimizers: the degenerate case. arXiv preprintarXiv:1710.00451 (2017)

  36. Kriventsov, D., Lin, F.: Regularity for shape optimizers: the nondegenerate case. Commun. Pure Appl. Math. 71(8), 1535–1596 (2018)

    Article  MathSciNet  Google Scholar 

  37. Mazzoleni, D., Terracini, S., Velichkov, B.: Regularity of the optimal sets for some spectral functionals. Geom. Funct. Anal. 27(2), 373–426 (2017)

    Article  MathSciNet  Google Scholar 

  38. Mazzoleni, D., Terracini, S., Velichkov, B.: Regularity of the free boundary for the vectorial Bernoulli problem. Anal. PDE (to appear). arXiv:1804.09243 (2018)

  39. Naber, A., Valtorta, D.: Rectifiable-Reifenberg and the regularity of stationary and minimizing harmonic maps. Ann. Math. (2) 185(1), 131–227 (2017)

    Article  MathSciNet  Google Scholar 

  40. Spolaor, L., Trey, B., Velichkov, B.: Free boundary regularity for a multiphase shape optimization problem. arXiv preprintarXiv:1810.06963 (2018)

  41. Spolaor, Luca, Velichkov, Bozhidar: An epiperimetric inequality for the regularity of some free boundary problems: the 2-dimensional case. Commun. Pure Appl. Math. 72(2), 375–421 (2019)

    Article  MathSciNet  Google Scholar 

  42. Velichkov, B.: Existence and regularity results for some shape optimization problems. Pisa: Edizioni della Normale; Pisa: Scuola Normale Superiore (Diss. 2013) (2015)

  43. Weiss, G.S.: Partial regularity for a minimum problem with free boundary. J. Geom. Anal. 9(2), 317–326 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors have been partially supported by Agence Nationale de la Recherche (ANR) with the projects GeoSpec (LabEx PERSYVAL-Lab, ANR-11-LABX-0025-01). The third author was also partially supported by the project CoMeDiC (ANR-15-CE40-0006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bozhidar Velichkov.

Additional information

Communicated by L. Ambrosio.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Extremality conditions and Lebesgue density

Appendix A. Extremality conditions and Lebesgue density

In this section we prove Proposition A.1, which we use in Proposition 5.12 to show that the Lagrange multiplier \(\Lambda _u\) is strictly positive, but the result is of independent interest. For instance, it applies to optimal partition problems (see, for example, [20] and [17]). We first show that a function which is critical for the functional

$$\begin{aligned} J(u):=\int _D|\nabla u|^2e^{-\Phi }\,dx-\lambda \int _Du^2e^{-\Phi }\,dx, \end{aligned}$$
(A.1)

with respect to internal variations that is

$$\begin{aligned} \displaystyle \delta J(u)[\xi ]:=\lim _{t\rightarrow 0}J(u(x+t\xi (x)))=0\quad \text {for every vector field}\quad \xi \in C^\infty _c(D;{\mathbb {R}}^d), \end{aligned}$$

satisfies a monotonicity formula for the associated Almgren frequency function N(r). Now, by the argument of Garofalo and Lin (see [26]) the monotonicity of the frequency function implies that u cannot decay too fast around the free boundary points. If, in addition, u is a solution of \(-{{\,\mathrm{div}\,}}(e^{-\Phi }\nabla u)=\lambda u e^{-\Phi }\) on the positivity set \(\Omega _u=\{u>0\}\), we can use a Caccioppoli inequality to show that if the Lebesgue density of \(\Omega _u\) is too small, then the decay of u on the balls of radius r should be very fast. This, in combination with the monotonicity of the Almgren’s frequency function, shows that the Lebesgue density of \(\Omega _u\) should be bounded from below everywhere (and not only on the boundary of \(\Omega _u\)). In particular, there cannot be points of zero Lebesgue density for \(\Omega _u\) in D.

Proposition A.1

Let \(D\subset {\mathbb {R}}^d\) be a bounded open set and \(\Phi \in W^{1,\infty } (D)\). Suppose that \(\lambda \ge 0\) and \(u\in H^1(D)\) is a nonnegative (non-identically-zero) function such that

  1. (a)

    u is a solution of the equation

    $$\begin{aligned} -{{\,\mathrm{div}\,}}(e^{-\Phi }\nabla u)=\lambda e^{-\Phi }u\quad \text {in}\ \Omega _u=\{u>0\}; \end{aligned}$$
    (A.2)
  2. (b)

    u satisfies the extremality condition

    $$\begin{aligned} \delta J(u)[\xi ]=0\quad \text {for every}\ \xi \in C^\infty _c(D;{\mathbb {R}}^d), \end{aligned}$$

    where J is given by (A.1) and its first variation in the direction \(\xi \) is given by

    $$\begin{aligned} \delta J(u)[\xi ] := \int _D \Big [ 2 D\xi (\nabla u)\cdot \nabla u + \big (|\nabla u|^2 - \lambda u^2\big ) (\nabla \Phi \cdot \xi - {{\,\mathrm{div}\,}}\xi ) \Big ] e^{-\Phi } dx. \end{aligned}$$
    (A.3)

Then, \(|D\backslash \Omega _u|=0\).

1.1 Reduction to the case \(\lambda =0\)

In this section we will show that it is sufficient to prove Proposition A.1 for \(\lambda =0\). The general case will then follow by an elementary substitution argument. In the next lemma we deal with the first variation of the functional J.

Lemma A.2

Suppose that \(D\subset {\mathbb {R}}^d\) is a bounded open set, \(a:D\rightarrow {\mathbb {R}}\) is a given Lipschitz function such that \(0<{\varepsilon }\le a\le {\varepsilon }^{-1}\) on D. Let \(\lambda >0\) and let \(\varphi \in H^2(D)\) be such that

$$\begin{aligned} -{{\,\mathrm{div}\,}}(a\nabla \varphi )=\lambda a\varphi \quad \text {in}\ D,\qquad {\varphi \ge {\varepsilon }>0}\quad \text {on}\ D. \end{aligned}$$

For any \(u\in H^1(D)\), we set \({{\tilde{a}}}(x):=\varphi ^2(x)a(x)\), \({{\tilde{u}}}:=u/\varphi \),

$$\begin{aligned} J(u):=\int _{D}\left( |\nabla u|^2-\lambda u^2\right) a(x)\,dx\quad \text {and}\quad {{\tilde{J}}}(u):=\int _{D}|\nabla u|^2{{\tilde{a}}}(x)\,dx, \\ \delta J(u)[\xi ]:=\int _D \Big [ 2a D\xi (\nabla u)\cdot \nabla u - \left( |\nabla u|^2-\lambda u^2\right) {{\,\mathrm{div}\,}}(a\xi ) \Big ] dx, \\ \delta {{\tilde{J}}}(u)[\xi ]:=\int _D \Big [ 2{{\tilde{a}}} D\xi (\nabla u)\cdot \nabla u - |\nabla u|^2 {{\,\mathrm{div}\,}}({{\tilde{a}}}\xi ) \Big ] dx\quad \text {for any}\quad \xi \in C^\infty _c(D;{\mathbb {R}}^d). \end{aligned}$$

Then, for every \(u\in H^1(D)\) and every \(\xi \in C^\infty _c(D;{\mathbb {R}}^d)\), we have

$$\begin{aligned} \delta {{\tilde{J}}} ({{\tilde{u}}})[\xi ]=\delta J(u)[\xi ]-2\int _D\nabla \left( u \xi \cdot \nabla (\ln \varphi ) \right) \cdot \nabla u\,a\,dx+2\int _D\left( u \xi \cdot \nabla (\ln \varphi ) \right) \lambda a u\,dx. \end{aligned}$$
(A.4)

Proof

Notice that we may assume \(u\in C^\infty (D)\). First we notice that an integration by parts gives

$$\begin{aligned} \delta {{\tilde{J}}}({{\tilde{u}}})[\xi ]&=\int _D 2\,\partial _i\xi _j\,\partial _i {{\tilde{u}}}\, \partial _j{{\tilde{u}}}\,\tilde{a}\,dx-\int _D|\nabla {{\tilde{u}}}|^2{{\,\mathrm{div}\,}}({{\tilde{a}}}\xi )\,dx\\&=-\int _D 2\,\xi _j\,\partial _i({{\tilde{a}}}\,\partial _i \tilde{u})\,\partial _j{{\tilde{u}}}\,dx-\int _D 2\,\xi _j\,\partial _i \tilde{u}\,\partial _{ij}{{\tilde{u}}}\,{{\tilde{a}}}\,dx-\int _D|\nabla \tilde{u}|^2{{\,\mathrm{div}\,}}({{\tilde{a}}}\xi )\,dx\\&=-\int _D 2\,\xi _j\,\partial _i({{\tilde{a}}}\,\partial _i \tilde{u})\,\partial _j{{\tilde{u}}}\,dx-\int _D {{\,\mathrm{div}\,}}({{\tilde{a}}}|\nabla \tilde{u}|^2\xi )\,dx=-\int _D 2\,\xi _j\,\partial _i({{\tilde{a}}}\,\partial _i {{\tilde{u}}})\,\partial _j{{\tilde{u}}}\,dx\\&=-\int _D 2(\xi \cdot \nabla {{\tilde{u}}}){{\,\mathrm{div}\,}}({{\tilde{a}}}\nabla {{\tilde{u}}})\,dx . \end{aligned}$$

and, analogously,

$$\begin{aligned} \delta J(u)[\xi ] =-\int _D 2(\xi \cdot \nabla u){{\,\mathrm{div}\,}}( a\nabla u)\,dx+\lambda \int _Du^2{{\,\mathrm{div}\,}}(a\xi )\,dx. \end{aligned}$$

Now, since

$$\begin{aligned} {{\,\mathrm{div}\,}}({{\tilde{a}}}\nabla {{\tilde{u}}})={{\,\mathrm{div}\,}}(a(\varphi \nabla u-u\nabla \varphi ))=\varphi {{\,\mathrm{div}\,}}(a\nabla u)-u{{\,\mathrm{div}\,}}(a\nabla \varphi )=\varphi ({{\,\mathrm{div}\,}}(a\nabla u)+\lambda a u), \end{aligned}$$

we get

$$\begin{aligned} \delta {{\tilde{J}}}({{\tilde{u}}})[\xi ]&=-2\int _D\xi \cdot (\nabla u-\frac{u}{\varphi }\nabla \varphi )\big ({{\,\mathrm{div}\,}}(a\nabla u)+\lambda a u\big )\,dx\\&=2\int _D\xi \cdot \nabla \varphi \frac{u}{\varphi }\big ({{\,\mathrm{div}\,}}(a\nabla u)+\lambda a u\big )\,dx-2\int _D(\xi \cdot \nabla u)\big ({{\,\mathrm{div}\,}}(a\nabla u)+\lambda a u\big )\,dx\\&=-2\int _D\nabla \left( \frac{\xi \cdot \nabla \varphi }{\varphi }u\right) \cdot \nabla u\,a\,dx+2\int _D\left( \frac{\xi \cdot \nabla \varphi }{\varphi }u\right) \lambda a u\,dx+\delta J(u)[\xi ], \end{aligned}$$

which is precisely (A.4). \(\square \)

Let now \(D\subset {\mathbb {R}}^d\) and \(u\in H^1(D)\) be as in Proposition A.1 for some \(\lambda >0\). In order to prove that \(|D\backslash \Omega _u|=0\), it is sufficient to prove that \(|(D\cap B)\backslash \Omega _u|=0\) for any (small) ball \(B\subset D\). Let now \(x_0\in D\) and let \(R>0\) be such that \(\lambda _1(B_R(x_0),\nabla \Phi )=\lambda \). Such a radius exists, since the map \(f(r):= \lambda _1(B_r(x_0),\nabla \Phi )\) is continuous, \(f(0)=+\infty \) and \(f(+\infty )=0\). Notice also that we may assume \(\Phi \) to be defined on the entire space \({\mathbb {R}}^d\). Let \(\varphi \) be the first eigenfunction on \(B_R(x_0)\) and let \(r=R/2\). Then, we can apply Lemma A.2 in the set \(D\cap B_r(x_0)\) with \(a=e^{-\Phi }\). Moreover, since u satisfies (A.2), we get that

$$\begin{aligned} \delta {{\tilde{J}}}({{\tilde{u}}})[\xi ]=\delta J(u)[\xi ]=0,\quad \text {for every}\ \xi \in C^\infty _c(D\cap B_r(x_0);{\mathbb {R}}^d), \end{aligned}$$

which proves that \({{\tilde{u}}}=u/\varphi \) satisfies hypothesis (b) for \(\lambda =0\). Finally, in order to prove that \({{\tilde{u}}}\) satisfies hypothesis (a), we notice that on \(\Omega _u=\Omega _{\tilde{u}}\) we have (in a weak sense)

$$\begin{aligned} {{\,\mathrm{div}\,}}({{\tilde{a}}}\nabla {{\tilde{u}}})=\varphi {{\,\mathrm{div}\,}}(a\nabla u)-u{{\,\mathrm{div}\,}}(a\nabla \varphi )=\varphi \left( {{\,\mathrm{div}\,}}(a\nabla u)+\lambda a u\right) =0. \end{aligned}$$

1.2 Proof of Proposition A.1 in the case \(\lambda =0\)

Let \(\lambda =0\). Then we have

$$\begin{aligned}&J(u):=\int _D|\nabla u|^2e^{-\Phi }\,dx, \end{aligned}$$
(A.5)
$$\begin{aligned}&\delta J(u)[\xi ] := \int _D \Big [ 2 D\xi (\nabla u)\cdot \nabla u + |\nabla u|^2 (\nabla \Phi \cdot \xi - {{\,\mathrm{div}\,}}\xi ) \Big ] e^{-\Phi } dx. \end{aligned}$$
(A.6)

Let \(x_0=0\in D\) and \(\tau =\Vert \nabla \Phi \Vert _{L^\infty (D)}\). We set

$$\begin{aligned} H(r):=\int _{\partial B_r}u^2e^{-\Phi }d{\mathcal {H}}^{d-1},\qquad D(r):=\int _{B_r}|\nabla u|^2e^{-\Phi }dx\quad \text {and}\quad N(r):=\frac{rD(r)}{H(r)}. \end{aligned}$$

Step 1 Derivative of H. We calculate

$$\begin{aligned} H'(r)&=\frac{d-1}{r}H(r)+r^{d-1}\frac{d}{dr}\int _{\partial B_1}u^2(rx)e^{-\Phi (rx)}d{\mathcal {H}}^{d-1}(x)\\&=\frac{d-1}{r}H(r)+2\int _{\partial B_r}u\frac{\partial u}{\partial n}e^{-\Phi }d{\mathcal {H}}^{d-1}-\int _{\partial B_r}u^2(n\cdot \nabla \Phi )e^{-\Phi }d{\mathcal {H}}^{d-1}\\&=\frac{d-1}{r}H(r)+2\int _{B_r}|\nabla u|^2e^{-\Phi }dx-\int _{\partial B_r}u^2(n\cdot \nabla \Phi )e^{-\Phi }d{\mathcal {H}}^{d-1}, \end{aligned}$$

which we rewrite as

$$\begin{aligned} H'(r)=\frac{d-1}{r}H(r)+2 D(r)-H_\Phi (r). \end{aligned}$$
(A.7)

where we have set

$$\begin{aligned} H_\Phi (r):=\int _{\partial B_r}u^2(n\cdot \nabla \Phi )e^{-\Phi }d{\mathcal {H}}^{d-1}\quad \text {and}\quad |H_\Phi (r)|\le \tau H(r). \end{aligned}$$

Step 2 Equidistribution of the energy. Let \(\phi _{\varepsilon }\) be a radially decreasing function such that \(0\le \phi _{\varepsilon }\le 1\) on \(B_r\), \(\phi _{\varepsilon }=1\) on \(B_{r(1-{\varepsilon })}\), \(\phi _{\varepsilon }=0\) on \(\partial B_r\) and \(|\nabla \phi _{\varepsilon }|\le C(r{\varepsilon })^{-1}\). The vector field \(\xi (x):=x\phi _{\varepsilon }(x)\) satisfies \({{\,\mathrm{div}\,}}\xi (x)=d\phi _{\varepsilon }(x)+x\cdot \nabla \phi _{\varepsilon }\) and \(\partial _i\xi _j=\delta _{ij}\phi _{\varepsilon }(x)+x_j\partial _i\phi _{\varepsilon }(x)\). Since \(\lambda =0\) we have

$$\begin{aligned} \delta J(u)[\xi ]&= \int _D \Big [ 2 D\xi (\nabla u)\cdot \nabla u + |\nabla u|^2 (\nabla \Phi \cdot \xi - {{\,\mathrm{div}\,}}\xi ) \Big ] e^{-\Phi } dx\\&= \int _D \Big [ 2 |\nabla u|^2\phi _{\varepsilon }+2(x\cdot \nabla u)(\nabla \phi _{\varepsilon }\cdot \nabla u) - |\nabla u|^2 (d\phi _{\varepsilon }(x)+x\cdot \nabla \phi _{\varepsilon }) \Big ] e^{-\Phi } dx\\&\qquad +\int _D|\nabla u|^2(\nabla \Phi \cdot x)\phi _{\varepsilon }e^{-\Phi } dx, \end{aligned}$$

and passing to the limit as \({\varepsilon }\rightarrow 0\), rearranging the terms and using the property (b), we get

$$\begin{aligned} 0&=-(d-2)\int _{B_r}|\nabla u|^2e^{-\Phi }dx+r\int _{\partial B_r}|\nabla u|^2e^{-\Phi } d{\mathcal {H}}^{d-1}\\&\qquad -2r\int _{\partial B_r}\left( \frac{\partial u}{\partial n}\right) ^2e^{-\Phi } d{\mathcal {H}}^{d-1}+\int _{B_r}|\nabla u|^2 (\nabla \Phi \cdot x) e^{-\Phi } dx, \end{aligned}$$

which we rewrite as

$$\begin{aligned} -(d-2)D(r)+rD'(r)= 2r\int _{\partial B_r}\left( \frac{\partial u}{\partial n}\right) ^2e^{-\Phi } d{\mathcal {H}}^{d-1}-rD_\Phi (r), \end{aligned}$$

where

$$\begin{aligned} D_\Phi (r):=\frac{1}{r}\int _{B_r}|\nabla u|^2 (\nabla \Phi \cdot x) e^{-\Phi } dx\qquad \text {and}\qquad |D_\Phi (r)|\le \tau D(r). \end{aligned}$$

Step 3 The derivative of N. We notice that N(r) is only defined for r such that \(H(r)>0\). In what follows we fix \(r_0>0\) such that \(B_{r_0}(x_0)\subset D\) and \(H(r_0)>0\). Since \(u\in H^1(D)\), there is an interval \((a,b)\ni r_0\), on which \(H>0\).

$$\begin{aligned} N'(r)&=\frac{D(r)H(r)+rD'(r)H(r)-rD(r)H'(r)}{H^2(r)}\nonumber \\&= \frac{D(r)H(r)+rD'(r)H(r)-r D(r)\left( \frac{d-1}{r}H(r)+2D(r)- H_\Phi (r)\right) }{H^2(r)}\nonumber \\&=\frac{-(d-2)D(r)H(r)+rD'(r)H(r)-2rD^2(r)+r D(r)H_\Phi (r)}{H^2(r)}\nonumber \\&=\frac{2r}{H^2(r)}\left( H(r)\int _{\partial B_r}\left( \frac{\partial u}{\partial n}\right) ^2e^{-\Phi } d{\mathcal {H}}^{d-1}-D^2(r)\right) +\frac{r \left( D(r)H_\Phi (r)-D_\Phi (r)H(r)\right) }{H^2(r)} \end{aligned}$$
(A.8)

Now we notice that, since u solves (A.2) on \(\Omega _u\), we have

$$\begin{aligned} D(r)&=\int _{B_r}|\nabla u|^2e^{-\Phi }dx=\int _{\partial B_r}u\frac{\partial u}{\partial n}e^{-\Phi } d{\mathcal {H}}^{d-1}, \end{aligned}$$

and so, by the Cauchy-Schwarz inequality and (A.8) we obtain

$$\begin{aligned} N'(r)\ge \frac{r \left( D(r)H_\Phi (r)-D_\Phi (r)H(r)\right) }{H^2(r)}\ge -2\tau N(r). \end{aligned}$$
(A.9)

Step 4 A bound on N(r). Using the estimate (A.9) from the previous step we get that the function \(\,r\mapsto e^{2\tau r}N(r)\,\) is non-decreasing in r and so

$$\begin{aligned} N(r)\le e^{2\tau (r_0-r)}N(r_0)\le e^{2\tau r_0}N(r_0)\quad \text {for every}\ a<r\le r_0. \end{aligned}$$

Step 5 Strict positivity and doubling inequality for H(r). By the step 4 we have

$$\begin{aligned} \frac{d}{dr}\left[ \log \left( \frac{H(r)}{r^{d-1}}\right) \right] =2\frac{N(r)}{r}-\frac{H_\Phi (r)}{H(r)}\le \frac{2e^{2\tau r_0}N(r_0)}{r}+\tau , \end{aligned}$$
(A.10)

and integrating we get

$$\begin{aligned} \log \left( \frac{H(r_0)}{r_0^{d-1}}\right) -\log \left( \frac{H(r)}{r^{d-1}}\right) \le \log \Big (\frac{r_0}{r}\Big )\,2e^{2\tau r_0}N(r_0)+\tau r_0,\quad \text {for every}\ a<r\le r_0. \end{aligned}$$

In particular, \(H>0\) on every interval \([{\varepsilon }r_0,r_0]\) and so, \(H>0\) on \((0,r_0]\) and we might take \(a=0\). Moreover, integrating once again the inequality (A.10) from \(r<r_0/2\) to 2r, we get

$$\begin{aligned} \log \left( \frac{H(2r)}{H(r)}\right) \le ((d-1)\log 2+\tau r_0)+2\log 2\,e^{2\tau r_0}N(r_0)\quad \text {for every}\ 0<r\le \frac{r_0}{2}. \end{aligned}$$

Taking \(r_0\le 1\), there is a constant C, depending only on d and \(\tau \), such that

$$\begin{aligned} H(2r)\le C\exp (CN(r_0))H(r)\quad \text {for every}\ 0<r\le \frac{r_0}{2}. \end{aligned}$$
(A.11)

Integrating once more in r we get

$$\begin{aligned} \int _{B_{2r}}u^2e^{-\Phi }\,dx\le C\exp (CN(r_0))\int _{B_{r}}u^2e^{-\Phi }\,dx\qquad \text {for every}\qquad 0<r\le \frac{r_0}{2}. \end{aligned}$$
(A.12)

Step 6. Caccioppoli inequality and conclusion. Let \(r\in (0,r_0/2]\) and let \(\phi \in C^\infty _0(B_{2r})\) be such that \(\phi =1\) in \(B_r\), \(\phi =0\) on \(\partial B_{2r}\), \(0\le \phi \le 1\) and \(|\nabla \phi |\le 2/r\) on \(B_{2r}\backslash B_r\). Using the fact that u is a solution of \(-{{\,\mathrm{div}\,}}(e^{-\Phi }\nabla u)=0\) in \(\Omega _u\), we get the following Caccioppoli inequality:

$$\begin{aligned} \int _{B_r}|\nabla u|^2e^{-\Phi }\,dx&\le \int _{B_{2r}}|\nabla (u\phi )|^2e^{-\Phi }\,dx=\int _{B_{2r}}\left( u^2|\nabla \phi |^2+\nabla u\cdot \nabla (u\phi ^2)\right) e^{-\Phi }\,dx\nonumber \\&= \int _{B_{2r}}u^2|\nabla \phi |^2e^{-\Phi }\,dx-\int _{B_{2r}} u\phi ^2{{\,\mathrm{div}\,}}\left( e^{-\Phi }\nabla u)\right) \,dx\nonumber \\&= \int _{B_{2r}}u^2|\nabla \phi |^2e^{-\Phi }\,dx.\nonumber \\&\le \frac{4}{r^2}\int _{B_{2r}}u^2e^{-\Phi }\,dx. \end{aligned}$$
(A.13)

On the other hand, there are dimensional constants \(C_d\) and \({\varepsilon }_d>0\) such that, if \(|\Omega _u\cap B_r|\le {\varepsilon }_d|B_r|\), then the following inequality does hold (see [15, Lemma 4.4])

$$\begin{aligned} \int _{B_r}u^2\,dx\le C_d r^2\bigg (\frac{|\Omega _u\cap B_r|}{|B_r|}\bigg )^{2/d}\int _{B_r}|\nabla u|^2\,dx, \end{aligned}$$

which, taking \(C:=C_d\exp (\max \Phi -\min \Phi )\), implies

$$\begin{aligned} \int _{B_r}u^2e^{-\Phi }\,dx\le C r^2\bigg (\frac{|\Omega _u\cap B_r|}{|B_r|}\bigg )^{2/d}\int _{B_r}|\nabla u|^2e^{-\Phi }\,dx. \end{aligned}$$

This, together with (A.13) and the doubling inequality (A.12), gives that there are constants \(C_1\) and \(C_2\), depending only on d and \(\tau \) such that

$$\begin{aligned} \min \left\{ {\varepsilon }_d,C_1\exp (-C_2N(r_0))\right\} \le \frac{|\Omega _u\cap B_r|}{|B_r|}\quad \text {for every}\ 0<r\le \frac{r_0}{2}, \end{aligned}$$

where to be precise we recall that we assumed \(r_0\le 1\). In particular, we have a lower density bound for \(\Omega _u\) at every point of D, which implies that \(|D\backslash \Omega _u|=0\) and concludes the proof.

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Russ, E., Trey, B. & Velichkov, B. Existence and regularity of optimal shapes for elliptic operators with drift. Calc. Var. 58, 199 (2019). https://doi.org/10.1007/s00526-019-1653-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-019-1653-6

Mathematics Subject Classification

Navigation