Skip to main content
Log in

Lipschitz Regularity of the Eigenfunctions on Optimal Domains

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We study the optimal sets \({\Omega^\ast\subseteq\mathbb{R}^d}\) for spectral functionals of the form \({F\big(\lambda_1(\Omega),\ldots,\lambda_p(\Omega)\big)}\), which are bi-Lipschitz with respect to each of the eigenvalues \({\lambda_1(\Omega), \lambda_2(\Omega)}, \ldots, {\lambda_p(\Omega)}\) of the Dirichlet Laplacian on \({\Omega}\), a prototype being the problem

$$\min{\big\{\lambda_1(\Omega)+\cdots+\lambda_p(\Omega)\;:\;\Omega\subseteq\mathbb{R}^d,\ |\Omega|=1\big\}}.$$

We prove the Lipschitz regularity of the eigenfunctions \({u_1,\ldots,u_p}\) of the Dirichlet Laplacian on the optimal set \({\Omega^\ast}\) and, as a corollary, we deduce that \({\Omega^\ast}\) is open. For functionals depending only on a generic subset of the spectrum, as for example \({\lambda_k(\Omega)}\), our result proves only the existence of a Lipschitz continuous eigenfunction in correspondence to each of the eigenvalues involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alt, H.W., Caffarelli, L.A.: Existence and regularity for a minimum problem with free boundary. J. Reine Angew. Math. 325, 105–144 (1981)

    MATH  MathSciNet  Google Scholar 

  2. Alt, H.W., Caffarelli, L.A., Friedman, A.: Variational problems with two phases and their free boundaries. Trans. Amer. Math. Soc. 282(2), 431–461 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  3. Antunes, P., Freitas, P.: Numerical optimization of low eigenvalues of the Dirichlet and Neumann Laplacians. J. Optim. Theory Appl. 154(1), 235–257 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ashbaugh, M.S.: Open problems on eigenvalues of the Laplacian. In: Analytic and Geometric Inequalities and Applications. Mathematical Applications, vol. 478, pp. 13–28. Kluwer Acad. Publ., Dordrecht, 1999

  5. Briançon, T., Lamboley, J.: Regularity of the optimal shape for the first eigenvalue of the Laplacian with volume and inclusion constraints. Ann. I. H. Poincaré 26(4), 1149–1163 (2009)

    Article  ADS  MATH  Google Scholar 

  6. Briançon, T., Hayouni, M., Pierre, M.: Lipschitz continuity of state functions in some optimal shaping. Calc. Var. Partial Differ. Equ. 23(1), 13–32 (2005)

    Article  MATH  Google Scholar 

  7. Bucur, D.: Minimization of the k-th eigenvalue of the Dirichlet Laplacian. Arch. Rat. Mech. Anal. 206(3), 1073–1083 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bucur, D., Buttazzo, G.: Variational Methods in Shape Optimization Problems, Progress in Nonlinear Differential Equations, vol. 65. Birkhäuser Verlag, Basel, 2005

  9. Bucur, D., Buttazzo, G., Velichkov, B.: Spectral optimization problems with internal constraint. Ann. I. H. Poincaré 30(3), 477–495 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. Bucur, D., Velichkov, B.: Multiphase shape optimization problems. SIAM J. Contr. Optim. (2014, accepted)

  11. Buttazzo, G.: Spectral optimization problems. Rev. Mat. Complut. 24(2), 277–322 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. Buttazzo, G., Dal Maso, G.: Shape optimization for Dirichlet problems: relaxed formulation and optimality conditions. Appl. Math. Optim. 23, 17–49 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  13. Buttazzo, G., Dal Maso, G.: An existence result for a class of shape optimization problems. Arch. Rational Mech. Anal. 122, 183–195 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Caffarelli, L., Jerison, D., Kenig, C.: Some new monotonicity theorems with applications to free boundary problems. Ann. Math. 155(2), 369–404 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Dal Maso, G., Mosco, U.: Wiener criteria and energy decay for relaxed Dirichlet problems. Arch. Rat. Mech. Anal. 95, 345–387 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  16. Dal Maso, G., Mosco, U.: Wiener’s criterion and \({\Gamma}\)-convergence. Appl. Math. Optim. 15, 15–63 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  17. Davies, E.: Heat Kernels and Spectral Theory. Cambridge University Press, 1989

  18. De Philippis, G., Velichkov, B.: Existence and regularity of minimizers for some spectral optimization problems with perimeter constraint. Appl. Math. Optim. 69, 199–231 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  19. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, reprint of the 1998 edition, Classics in Mathematics. Springer, Berlin (2001)

    Google Scholar 

  20. Henrot, A., Pierre, M.: Variation et Optimisation de Formes. Une Analyse Géométrique, Mathématiques and Applications, vol. 48. Springer, Berlin (2005)

    Google Scholar 

  21. Mazzoleni, D.: Boundedness of minimizers for spectral problems in \({\mathbb{R}^N}\), preprint. http://cvgmt.sns.it/person/977/ (2013)

  22. Mazzoleni, D.: Existence and regularity results for solutions of spectral problems. Ph.D. Thesis, Università à di Pavia and Friedrich-Alexander Universität Erlangen-Nürnberg (in preparation) (2014)

  23. Mazzoleni, D., Pratelli, A.: Existence of minimizers for spectral problems. J. Math. Pures Appl. 100(3), 433–453 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  24. Oudet, E.: Numerical minimization of eigenmodes of a membrane with respect to the domain. ESAIM:COCV 10(3), 315–330 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  25. Talenti, G.: Elliptic equations and rearrangements. Ann. Scuola Normale Superiore di Pisa 3(4), 697–718.

  26. Rayleigh, J.W.S.: The Theory of Sound, 1st edn. Macmillan, London (1877)

    Google Scholar 

  27. Wolf, S.A., Keller, J.B.: Range of the first two eigenvalues of the Laplacian. Proc. R. Soc. Lond., 447, 397–412 (1994)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorin Bucur.

Additional information

Communicated by G. Dal Maso

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bucur, D., Mazzoleni, D., Pratelli, A. et al. Lipschitz Regularity of the Eigenfunctions on Optimal Domains. Arch Rational Mech Anal 216, 117–151 (2015). https://doi.org/10.1007/s00205-014-0801-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-014-0801-6

Keywords

Navigation