Skip to main content
Log in

Local well-posedness of the vacuum free boundary of 3-D compressible Navier–Stokes equations

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, we consider the 3-D motion of viscous gas with the vacuum free boundary. We use the conormal derivative to establish local well-posedness of this system. One of important advantages in the paper is that we do not need any strong compatibility conditions on the initial data in terms of the acceleration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bresch, D., Desjardins, B.: Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model. Commun. Math. Phys. 238, 211–223 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chen, G., Karatka, M.: Global solutions to the Navier–Stokes equations for compressible heat conducting flow with symmetry and free boundary. Commun. Partial Differ. Equ. 27, 907–943 (2002)

    Article  MathSciNet  Google Scholar 

  3. Cho, Y., Kim, H.: Existence results for viscous polytropic fluids with vacuum. J. Differ. Equ. 228, 377–411 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Coutand, D., Shkoller, S.: Well-posedness in smooth function spaces for the moving-boundary three-dimensional compressible Euler equations in physical vacuum. Arch. Ration. Mech. Anal 206, 515–616 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dain, S.: Generalized Korn’s inequality and conformal Killing vectors. Calc. Var. Partial Differ. Equ. 25(4), 535–540 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fang, D., Zhang, T.: Global behavior of compressible Navier–Stokes equations with a degenerate viscosity coefficient. Arch. Ration. Mech. Anal. 182, 223–253 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fang, D., Zhang, T.: Global behavior of spherically symmetric Navier–Stokes–Poisson system with degenerate viscosity coefficients. Arch. Ration. Mech. Anal. 191, 195–243 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Feireisl, E.: Dynamics of viscous compressible fluids. In: Oxford Lecture Series in Mathematics and Its Applications, vol. 26. Oxford University Press, Oxford (2004)

  9. Guo, Y., Hadzic, M., Jang, J.: Continued Gravitational Collapse for Newtonian Stars (2018). arXiv:1811.01616

  10. Guo, Y., Tice, I.: Local well-posedness of the viscous surface wave problem without surface tension. Anal. PDE 6, 287–369 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Guo, Z., Li, H., Xin, Z.: Lagrange structure and dynamics for solutions to the spherically symmetric compressible Navier–Stokes equations. Commun. Math. Phys. 309, 371–412 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Guo, Z., Xin, Z.: Analytical solutions to the compressible Navier–Stokes equations with density-dependent viscosity coefficients and free boundaries. J. Differ. Equ. 253(1), 1–19 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hadzic, M., Jang, J.: Expanding large global solutions of the equations of compressible fluid mechanics. Invent. Math. 214, 1205–1266 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hoff, D.: Compressible flow in a half-space with Navier boundary conditions. J. Math. Fluid Mech. 7, 315–338 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hoff, D., Santos, M.M.: Lagrangean structure and propagation of singularities in multidimensional compressible flow. Arch. Ration. Mech. Anal. 188, 509–543 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hoff, D., Serre, D.: The failure of continuous dependence on initial data for the Navier–Stokes equations of compressible flow. SIAM J. Appl. Math. 51, 887–898 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hoff, D., Smoller, J.: Non-formation of vacuum states for compressible Navier–Stokes equations. Commun. Math. Phys. 216, 255–276 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Huang, X., Li, J., Xin, Z.: Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier–Stokes equations. Commun. Pure Appl. Math. 65, 549–585 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jang, J.: Local well-posedness of dynamics of viscous gaseous stars. Arch. Ration. Mech. Anal. 195, 797–863 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jang, J., Masmoudi, N.: Well-posedness for compressible Euler with physical vacuum singularity. Commun. Pure Appl. Math. 62, 1327–1385 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jang, J., Masmoudi, N.: Well-posedness of compressible Euler equations in a physical vacuum. Commun. Pure Appl. Math. 68, 61–111 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jiang, S., Zhang, P.: On spherically symmetric solutions of the compressible isentropic Navier–Stokes equations. Commun. Math. Phys. 215, 559–581 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kufner, A., Maligranda, L., Persson, L.-F.: The Hardy Inequality, p. 162. Vydavatelsksý Servis, Pilsen (2007)

    MATH  Google Scholar 

  24. Li, H., Wang, Y., Xin, Z.: Non-existence of classical solutions with finite energy to the Cauchy problem of the compressible Navier–Stokes equations (2017). arXiv:1706.01808

  25. Li, H., Zhang, X.: Global strong solutions to radial symmetric compressible Navier–Stokes equations with free boundary. J. Differ. Equ. 261(11), 6341–6367 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Li, J., Xin, Z.: Global existence of weak solutions to the Barotropic compressible Navier–Stokes flows with degenerate viscosities. Mathematics (2015). arXiv:1504.06826

  27. Lions, P.L.: Mathematical Topics in Fluid Mechanics. Compressible Models, vol. 2. Oxford University Press, New York (1998)

    MATH  Google Scholar 

  28. Liu, T., Yang, T.: Compressible flow with vacuum and physical singularity. Methods Appl. Anal. 7, 495–509 (2000)

    MathSciNet  MATH  Google Scholar 

  29. Liu, X.: Global solutions to compressible Navier–Stokes equations with spherical symmetry and free boundary. Nonlinear Anal. Real World Appl. 42, 220–254 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  30. Luo, T., Xin, Z., Yang, T.: Interface behavior of compressible Navier–Stokes equations with vacuum. SIAM J. Math. Anal. 31, 1175–1191 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  31. Luo, T., Xin, Z., Zeng, H.: Nonlinear asymptotic stability of the Lane–Emden solutions for the viscous gaseous star problem. Adv. Math. 291, 90–182 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Luo, T., Zeng, H.: Global existence of smooth solutions and convergence to Barenblatt solutions for the physical vacuum free boundary problem of compressible Euler equations with damping. Commun. Pure Appl. Math. 69, 1354–1396 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Majda, A.J., Bertozzi, A.L.: Vorticity and Incompressible Flow. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  34. Masmoudi, N., Rousset, F.: Uniform regularity for the Navier–Stokes equation with Naiver boundary condition. Arch. Ration. Mech. Anal. 203(2), 529–575 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Matsumura, A., Nishida, T.: The initial value problem for the equations of motion of viscous and heat-conductive gases. J. Math. Kyoto Univ. 20, 67–104 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  36. Matsumura, A., Nishida, T.: Initial boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids. Commun. Math. Phys. 89, 445–464 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  37. Okada, M., Makino, T.: Free boundary problem for the equation of spherically symmetrical motion of viscous gas. Jpn. J. Ind. Appl. Math. 10, 219–35 (1993)

    Article  MATH  Google Scholar 

  38. Simon, J.: Nonhomogeneous viscous incompressible fluids: existence of velocity, density, and pressure. SIAM J. Math. Anal. 21, 1093–1117 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  39. Vasseur, A., Yu, C.: Existence of global weak solutions for 3D degenerate compressible Navier–Stokes equations. Invent. Math. 206, 935–974 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  40. Xin, Z.: Blowup of smooth solutions to the compressible Navier–Stokes equation with compact density. Commun. Pure Appl. Math. 51, 229–240 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  41. Yang, T.: Singular behavior of vacuum states for compressible fluids. J. Comput. Appl. Math. 190, 211–231 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  42. Yeung, L., Yuen, M.: Analytical solutions to the Navier–Stokes–Poisson equations with density-dependent viscosity and with pressure. Proc. Am. Math. Soc. 139, 3951–3960 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  43. Zadrzyńska, E.: Evolution free boundary problem for equations of viscous compressible heat-conducting capillary fluids. Math. Methods Appl. Sci. 24, 713–743 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zadrzyńska, E., Zaja̧czkowski, W.M.: On nonstationary motion of a fixed mass of a viscous compressible barotropic fluid bounded by a free boundary. Colloq. Math. 79, 283–310 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  45. Zeng, H.: Global-in-time smoothness of solutions to the vacuum free boundary problem for compressible isentropic Navier–Stokes equations. Nonlinearity 28, 331–345 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

G. Gui is partially supported by the National Natural Science Foundation of China under Grants 11571279 and 11931013. C. Wang is partially supported by NSF of China under Grant 11701016. Y. Wang is partially supported by China Postdoctoral Science Foundation 8206200009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guilong Gui.

Additional information

Communicated by L. Caffarelli.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gui, G., Wang, C. & Wang, Y. Local well-posedness of the vacuum free boundary of 3-D compressible Navier–Stokes equations. Calc. Var. 58, 166 (2019). https://doi.org/10.1007/s00526-019-1608-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-019-1608-y

Mathematics Subject Classification

Navigation